Vehicle Network Toolbox™ 1
User’s Guide

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

X L9

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Vehicle Network Toolbox™ User’s Guide
© COPYRIGHT 2009 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

March 2009 Online only New for Version 1.0 (Release 2009a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Getting Started

Product Overviewcciiiiiiiiuennnnn.. 1-2
Getting to Know the Vehicle Network Toolbox 1-2
Main Features i, 1-2
Interaction Between the Toolbox and Its Components 1-4
Expected Background, 1-5
Related Products 0., 1-5
Installation Requirements 1-6
Supported Hardwarecciiiuo.... 1-7

CAN Communication Session 1-8
Workflow Overviewcouiiiiiinnnnennnnnn. 1-8
Configuring CAN Communications 1-10
Disconnecting Channels and Cleaning Up 1-19
Performing Advanced Configurations 1-21

Accessingthe Toolbox 1-27
Exploring the Toolbox 1-27
Getting Help 1-27
Viewing Examples 1-27

Using a CAN Database

2

Vector CANdb Support, 2-2

Loading and Creating Messages Using the .dbc File ... 2-3

Loading the CAN Database 2-3
Creatinga CAN Messagecoiiiiiinnneennnnn. 2-3
Adding a Database to a CAN Channel 2-4

iii

iv

Other Uses of the CAN Database
Viewing Messages Information in the CAN Database
Viewing Signal Information in a CAN Message
Attaching a CAN Database to Existing Messages

2-5
2-5
2-6
2-6

Monitoring CAN Message Traffic

3

The CAN Tool i
Openingthe CAN Tool it
Partsof the CAN Toolo,

Usingthe CANTool iiioo...
Viewing Messageson a Channel
Configuring the Channel Bus Speed
Saving the Message Log File
Viewing Unique Messagescciiiunnn...

3-2
3-2
3-2

3-6
3-6
3-6
3-7
3-7

Using the Vehicle Network Toolbox Block

Library
Introducing the Vehicle Network Toolbox Block
Library 4-2
Opening the Vehicle Network Toolbox Block
Library 4-3
Using the canlib Command from the MATLAB Command
Window 4-3
Using the Simulink Library Browser 4-4

Building Simulink Models to Transmit and Receive
MeESSaAZeS ... e
Build a Message Transmit Model
Build a Message Receive Model
Save and Run The Model

Contents

Function Reference

5

CAN Channel Construction 5-2
CAN Channel Configuration 5-3
CAN Channel Execution 5-4
CAN Channel Status, 5-5
CAN Databasec it 5-6
CAN Message Handling 5-7
Informationand Help 5-8
Graphical Tools 5-9
Vector Informatik 5-10

Functions — Alphabetical List

6

Property Reference

7

CAN Channel Base Properties 7-2
Channel Status Properties 7-2
CAN Message Propertiesccciiiiieeno... 7-2
CAN Database Propertiesccouiiiieo... 7-3
Receiving Messagesoviiinnnneinnnnnn. 7-3

Error Logging i, 7-3

vi

Contents

Device-Specific Properties 7-4

Vector Device Settingsciiiiinnnnn.. 7-4
Transceiver Settingscovvuiiene e nnnennnn. 7-4
Bit Timing Settingscciiiiiinneennn. 7-4

Properties — Alphabetical List

8|

Index

Getting Started

® “Product Overview” on page 1-2
¢ “CAN Communication Session” on page 1-8

e “Accessing the Toolbox” on page 1-27

1 Getting Started

Product Overview

In this section...

“Getting to Know the Vehicle Network Toolbox” on page 1-2

“Main Features” on page 1-2

“Interaction Between the Toolbox and Its Components” on page 1-4
“Expected Background ” on page 1-5

“Related Products” on page 1-5

“Installation Requirements” on page 1-6

“Supported Hardware” on page 1-7

Getting to Know the Vehicle Network Toolbox

The Vehicle Network Toolbox™ provides the ability to communicate with
in-vehicle networks using Controller Area Network (CAN) ptotocol. It is a
comprehensive toolbox with a MATLAB® interface, Simulink® modeling
support and a simple utility that allows you to monitor CAN traffic.

You can learn more about the Vehicle Network Toolbox by following a simple
workflow and some easy examples. This chapter introduces the toolbox and
provides some guidelines and examples to use the Vehicle Network Toolbox to
interface with the CAN bus.

Main Features

The Vehicle Network Toolbox product is a collection of M-file functions built
on the MATLAB technical computing environment.

The toolbox provides you with these main features:

“CAN Connectivity” on page 1-3

“Vector Device and Driver Support” on page 1-3

“Vehicle Network Toolbox Functions” on page 1-3

“Simulink Library Support” on page 1-3

Product Overview

® “CAN Tool Interface” on page 1-3

CAN Connectivity

The Vehicle Network Toolbox provides host-side CAN connectivity using
defined CAN devices. CAN is the predominant protocol in automotive
electronics by which many distributed control systems in a vehicle function.
For example, in a common design when you press a button to lock the doors
in your car, a control unit in the door reads that input and transmits lock
commands to control units in the other doors. These commands exist as data
in CAN messages, which the control units in the other doors receive and act
on by triggering their individual locks in response.

Vector Device and Driver Support

You can use the Vehicle Network Toolbox with devices supported by Vector.
These devices and drivers provide a link to the CAN bus on which you can
send and receive messages. See “Supported Hardware” on page 1-7 for more
information.

Vehicle Network Toolbox Functions

Using a set of well-defined functions, you can transfer messages between the
MATLAB workspace and a CAN bus using a CAN device. You can run test
applications that can log and record CAN messages for you to process and
analyze. You can also replay recorded sequences of messages.

Simulink Library Support

With the Vehicle Network Toolbox block library and other blocks from the
Simulink library, you can create sophisticated models to connect to a live
network and to simulate message traffic on a CAN bus.

CAN Tool Interface

Using this simple graphical user interface, you can monitor message traffic on
a selected device and channel. You can then analyze these messages.

1-3

1 Getting Started

Interaction Between the Toolbox and Its Components
The Vehicle Network Toolbox is a conduit between MATLAB and the CAN

bus.

CAMN
Module

CAMN
Module

CAM CAN Bus CAN
Module Module
CAN CAN
Module Device
Wehicle Netwark
Toolbox
MATLAB

In this illustration:

e There are six CAN modules attached to a CAN bus.

® One module which is a CAN device is attached to the Vehicle Network
Toolbox, built on the MATLAB technical computing environment.

Using the Vehicle Network Toolbox from MATLAB, you can configure a
channel on the CAN device to:

1-4

Product Overview

® Transmit messages to the CAN bus.
® Receive messages from the CAN bus.
® Trigger a callback function to run when the channel receives a message.

e Attach the database to the configured CAN channel to interpret received
CAN messages.

e Use the CAN database to construct messages to transmit.
® Log and record messages and analyze them in MATLAB.
® Replay live recorded sequence of messages in MATLAB.

® Build Simulink models to connect to a CAN bus and to simulate message
traffic.

® Monitor message traffic with the CAN Tool.

The Vehicle Network Toolbox is a comprehensive solution for CAN
connectivity in MATLAB and Simulink. Refer to the function and block
chapters for more information.

Expected Background

This document assumes that you are already familiar with the following
products:

¢ MATLAB — To write scripts and functions with M-code, and to use
functions with the command-line interface.

¢ Simulink — To create simple models to connect to a CAN bus or to and
simulate those models

e Vector CANdb — To understand CAN databases and message and signal
definitions

Related Products

The MathWorks™ provides several products that are relevant to the kinds
of tasks you can perform with the Vehicle Network Toolbox software and
that extend the capabilities of MATLAB. For information about these related
products, see toolbox product page on the MathWorks Web site.

1-5

http://www.mathworks.com/products/vehicle-network

1 Getting Started

Installation Requirements

“Installing Components” on page 1-6

“Installing Hardware Devices and Drivers” on page 1-6

“Installing the XL Driver Library” on page 1-6

“Installing the Toolbox” on page 1-7

Installing Components
To communicate on CAN networks from the MATLAB workspace, install
these components:

e Current MATLAB version

e Vehicle Network Toolbox software

® Vector hardware, drivers, and XL driver library

Installing Hardware Devices and Drivers

You need the latest version of the XLL Plug & Play drivers for your device to
use with Windows® XP or Windows Vista™,

The documentation from Vector provides installation instructions for
hardware devices such as CANcaseXL, CANboardXL, and CANcardXL,
drivers, and support libraries.

These drivers are available for download from the Vector Web site:

https://www.vector-worldwide.com/va_downloadcenter_us.html

Installing the XL Driver Library

Download and install the latest version of the XL Driver Library from
the Vector Web site. After you install, copy the filevxlapi.dll from the
installation folder to the windows root\system32 directory.

https://www.vector-worldwide.com/va_downloadcenter_us.html##
https://www.vector-worldwide.com/va_downloadcenter_us.html##

Product Overview

Installing the Toolbox

Determine if Vehicle Network Toolbox software is installed on your system by
typing the following in the MATLAB Command Window:

ver

The Command Window displays information about the MATLAB version you
are running, including a list of installed add-on products and their version
numbers. Check the list to see if the Vehicle Network Toolbox name appears.

For information about installing the toolbox, refer to the installation
documentation for your platform. If you experience installation difficulties,
look for the installation and license information at the MathWorks Web site:

http://www.mathworks.com/support

Supported Hardware
The Vehicle Network Toolbox supports the following Vector devices:

®* CANcaseXL

¢ CANboardXL

¢ CANboardXL pxi
¢ CANboardXL PCle
¢ CANcardXL

¢ CANcardX

You can also use the toolbox with virtual CAN channels available with Vector
hardware drivers.

1-7

http://www.mathworks.com/support

1 Getting Started

CAN Communication Session

In this section...

“Workflow Overview” on page 1-8
“Configuring CAN Communications” on page 1-10
“Disconnecting Channels and Cleaning Up” on page 1-19

“Performing Advanced Configurations” on page 1-21

Workflow Overview

This section takes you through the workflow for connecting to a CAN device
and then communicating with the CAN bus.

The subsequent sections map to the following CAN workflow chart.
Subsequent sections also provide interconnected code examples. You can

use these examples and try them sequentially to understand how the
communication works.

CAN Communication Session

Typical CAN Workflow

Transmitting

New or same
message?

Pack message
with data

h 4

Transmit a
Message

More to
transmit?

Create a CAN
channel

¥

Configure
channel

properties

h 4

Start configured
channel

Transmitting
or receiving
messages?

maglut =
canMessage (500, false 8)

pack (meglut,

25,0,16,"'LittleEndian’)

transmit (canch, msglut)

Done with
channel?

canch =
canChannel (‘Vector’

‘' CAMecaseXL 1',1)

configBusSpeed (canch, 250000)
atart (canch})
Recaiving
¥
Recaive
messages | poorn =
receive (canch,1)
L 4
Extract <assorted functions>
messages like eaxtracthll
L 4
1 k T
Unpack data value -UME;C (msgIn,
r L
from messages ‘LittleEndian’,
"intlée")

Yes

Disconnect the
channel

stop (canch)

1-9

1 Getting Started

1-10

Configuring CAN Communications

The following sections provide a sequential workflow for configuring CAN
communications. You can use the provided examples and try them in a
MATLAB Command Window to follow along.

This example creates two CAN channel objects using the canHWInfo function
to obtain information about the devices installed on your system. You edit the
properties of the first channel and create a message using the canMessage
function. You transmit the message from first channel using the transmit
function, and receive it on the other using the receive function.

® “Prerequisites” on page 1-10

¢ “Checking for the Installed CAN Hardware” on page 1-10

e “Creating a CAN Channel Object” on page 1-11

¢ “Configuring Properties” on page 1-13

e “Starting the Configured Channel” on page 1-14

® “Creating a Message Object” on page 1-15

e “Packing a Message” on page 1-16

e “Transmitting a Message” on page 1-17

e “Receiving a Message” on page 1-18

e “Unpacking a Message” on page 1-19

Prerequisites
Before you follow this example, make sure you:

® Complete your Toolbox Installation before you try out the examples.

® Connect the two channels in your CAN device in a loopback.

Checking for the Installed CAN Hardware

1 Get information about the CAN hardware devices on your system:

info = canHWInfo

CAN Communication Session

MATLAB displays the following information:
info =

CAN Devices Detected:
Vector Devices:
CANcaseXL 1 Channel 1

To connect, use - canChannel('Vector', 'CANcaseXL 1', 1)
CANcaseXL 1 Channel 2

To connect, use - canChannel('Vector', 'CANcaseXL 1', 2)
Virtual 1 Channel 1

To connect, use - canChannel('Vector', 'Virtual 1', 1)
Virtual 1 Channel 2

To connect, use - canChannel('Vector', 'Virtual 1', 2)

2 You can get details about all available CAN channels by typing:

info.VendorInfo.ChannelInfo (1)

Press Enter and MATLAB displays information like:

can.vector.ChannelInfo handle
Package: can.vector

Properties:
Device: 'CANcaseXL 1'
DeviceChannelIndex: 1
DeviceSerialNumber: 24811
ObjectConstructor: 'canChannel('Vector', 'CANcaseXL 1', 1)'

Creating a CAN Channel Object

Note This example assumes that you have a loopback connection between
the two channels on your CAN device.

1-11

Getting Started

1-12

1 Create the first CAN channel on an installed CAN device:

canch = canChannel('Vector', 'CANcaseXL 1',1)

Notes You cannot use the same variable to create multiple channels
sequentially. Clear any channel in use before using the same variable
to construct a new CAN Channel.

You cannot create arrays of CAN channel objects. Each object you create
must exist as its own individual variable.

2 Press Enter after you create the connection. MATLAB displays a summary
of the channel properties:

Summary of CAN Channel using 'Vector' 'CANcaseXL 1' Channel 1.

Channel Parameters: Bus Speed is 500000.
Bus Status is 'N/A'.
Transceiver name is 'CANpiggy 251mag (Highspeed
Serial Number of this device is 24811.
Initialization access is allowed.
No database is attached.

Status: Offline - Waiting for START.
0 messages available to RECEIVE.
0 messages transmitted since last start.
0 messages received since last start.
Filter History: Filters are open for Standard and Extended IDs.

3 Create a second CAN channel object.

canch1i = canChannel('Vector', 'CANcaseXL 1',2)

You used the canChannel function to connect to the CAN device. To identify
installed devices, use the canHWInfo function.

CAN Communication Session

Configuring Properties

You can set the behavior of your CAN channel by configuring its property
values. For this exercise, change the bus speed of channel 1 to 250000 using
the configBusSpeed function.

Tip Configure property values before you start the channel.

1 Display the properties on canch:

get (canch)

MATLAB displays all properties on the configured channel:

General Settings:
BusStatus = 'N/A’
Database = []
InitializationAccess = 1
MessageReceivedFcn = []
MessageReceivedFcnCount = 1
MessagesAvailable = 0
MessagesReceived = 0
MessagesTransmitted = 0
ReceiveErrorCount = 0
Running = 0
SilentMode = 0
TransmitErrorCount = 0

Device Settings:

Device = 'CANcaseXL 1'
DeviceChannellIndex = 1
DeviceSerialNumber = 24811
DeviceVendor = 'Vector'

Transceiver Settings:

TransceiverName = 'CANpiggy 251mag
(Highspeed)'

TransceiverState = 16

1-13

Getting Started

1-14

Bit Timing Settings:
BusSpeed = 500000

SJw = 1
TSEG1 = 4
TSEG2 = 3

NumOfSamples = 1

2 Change the BusSpeed property of the channel to 250000:

configBusSpeed(canch, 250000)
3 To see the changed property value, type:
get(canch)

MATLAB displays all properties on the configured channel as before, with
the changed BusSpeed property value:

BusSpeed = 250000

4 Change the bus speed of the second channel (canch1) by repeating steps
2 and 3.

Starting the Configured Channel
Start your CAN channels after you configure all properties.

1 Start the first channel:
start(canch)

2 Start the second channel:

start(canchi)

3 To check that the channel is online, type the channel name in the Command
Window. The Status section indicates that the channel is now online, as
in this example:

CAN Communication Session

canch =

Status: Online.
0 messages available to RECEIVE.
0 messages transmitted since last start.
0 messages received since last start.

Filter History: Filters are open for Standard and Extended IDs.

Creating a Message Object

After set all the property values as desired and your channels are online,
you are ready to transmit and receive messages on the CAN bus. For this
exercise, transmit a message using canch and receive it using canch1. To
transmit a message, create a message object and pack the message with the
required data.

1 Build a CAN message of ID 500 of standard type and a data length of
8 bytes:

messageout = canMessage (500, false, 8)

The message object is now:

can.Message (Normal Frame)

ID: 500 / 1F4 (Hex)
Extended: 0

Data: [0 0 0 0 0 0 0 0]
[OO 00O 00 OO0 00 00 00 00] (Hex)

The fields in the message show:

e can.Message (Normal Frame) — Specifies that the message is not an
error or a remote frame.

¢ ID — The ID you specified and its hexadecimal equivalent.

1-15

1 Getting Started

e Extended — A logical 0 (false) because you did not specify an extended ID.
® Data — A uint8 array of Os specified by the data length.

Refer to the canMessage function to understand more about the input
arguments.

You can also use a database to create a CAN message. Refer to Using a CAN
Database for more information.

Packing a Message

After you define the message, pack it with the required data.

1 Use the pack function to pack your message with these input parameters:
pack (messageout, 25, 0, 16, 'LittleEndian')

Here you are specifying the data value to be 25, the start bit to be 0, the
signal size to be 16, and the byte order to be little-endian format.

2 To see the packed data, type:

message
MATLAB displays your message properties with the specified data:
can.Message (Normal Frame)

ID: 500 / 1F4 (Hex)
Extended: O

Data: [256 0 0 O O O O 0]
[19 00 00 00 00 00 00 00] (Hex)

The only field that changes after you specify the data is Data. Refer to the
pack function to understand more about the input arguments.

1-16

CAN Communication Session

Transmitting a Message

After you define the message and pack it with the required data, you are
ready to transmit the message. For this example, use canch to transmit the
message.

1 Use the transmit function to transmit the message, supplying the channel
and the message as input arguments:

transmit(canch, messageout)

2 To display the channel status, type:

canch

MATLAB displays the updated status of the channel:

Summary of CAN Channel using 'Vector' 'CANcaseXL 1' Channel 1.

Channel Parameters: Bus Speed is 250000.
Bus Status is 'ErrorPassive'.
Transceiver name is 'CANpiggy 251mag
(Highspeed) '.
Serial Number of this device is 24811.
Initialization access is allowed.
No database is attached.

Status: Online.
1 messages available to RECEIVE.
1 messages transmitted since last start.
0 messages received since last start.

Filter History: Filters are open for Standard and Extended IDs.

In the Status section, messages transmitted since last start count
increments by 1 each time you transmit a message.

Refer to the transmit function to understand more about the input
arguments.

1-17

Getting Started

1-18

Receiving a Message

After your channel is online, use the receive function to receive available
messages. For this example, receive the message on the second configured
channel object, canch1.

1 To see messages available to be received on this channel, type:

canchi

The channel status displays available messages:

Status: Online.
1 messages available to RECEIVE.
0 messages transmitted since last start.
0 messages received since last start.

2 To receive one message and store it as messagein on canchi, type:

messagein = receive(canchi, 1)

MATLAB returns the received message properties:

can.Message (Normal Frame)

ID: 500 / 1F4 (Hex)
Extended: 0
Timestamp: 6.999441e+000

Data: [26 0 0 O O O O 0]
[19 00 00 00 00 00 00 00] (Hex)

3 To check if the channel received the message, type:

canch1

MATLAB returns the channel properties, and the status indicates that
the channel received one message:

CAN Communication Session

Status: Online.
0 messages available to RECEIVE.
0 messages transmitted since last start.
1 messages received since last start.

Refer to the receive function to understand more about its input arguments.

Unpacking a Message

After your channel receives a message, specify how to unpack the message
and interpret the data in the message. Use unpack to specify the parameters
for unpacking a message:

value = unpack(message, 0, 16, 'LittleEndian', 'inti16')
The unpacked message returns a value based on your parameters:

value =

25

Refer to the unpack function to understand more about its input arguments.

Disconnecting Channels and Cleaning Up

® “Disconnecting the Configured Channel” on page 1-19
¢ “Cleaning Up the MATLAB Workspace” on page 1-20

Disconnecting the Configured Channel

When you no longer need to communicate with your CAN bus, disconnect the
CAN channel that you configured. Use the stop function to disconnect.

1 Stop the first channel:

stop(canch)

1-19

1 Getting Started

2 Check the channel status:

canch

MATLAB displays the channel status:

Status: Offline - Waiting for START.
1 messages available to RECEIVE.
1 messages transmitted since last start.
0 messages received since last start.

3 Stop the second channel:

stop (canch1)

4 Check the channel status:

canch1

MATLAB displays the channel status:

Status: Offline - Waiting for START.
0 messages available to RECEIVE.
0 messages transmitted since last start.
1 messages received since last start.

Cleaning Up the MATLAB Workspace

When you no longer need the objects you used, remove them from the
MATLAB workspace. To remove channel objects and other variables from the
MATLAB workspace, use the clear function.

1 Clear the first channel:

clear canch

2 Clear the second channel:

clear canchi

1-20

CAN Communication Session

3 Clear the CAN messages:
clear('messageout', 'messagein')
4 (Clear the unpacked value:

clear value

Performing Advanced Configurations

* “Configuring Message Filtering” on page 1-21
¢ “Configuring Multiplexing” on page 1-22
¢ “Configuring Silent Mode” on page 1-25

Configuring Message Filtering

You can set up filters on your channel to accept messages based on the filtering
parameters you specify. Set up your filters before putting your channel online.
For more information on message filtering, see these functions:

filterAcceptRange

filterBlockRange

filterReset
e filterSet
To specify a range of message IDs that you want the channel to accept, type:

stop (canch)
filterAcceptRange (canch, 500, 625)
start (canch)

Now you can build a message, and then pack, transmit, receive, and unpack

it. If you display your channel settings, you see the status of the message
filters on it.

canch

canch =

1-21

1 Getting Started

1-22

Summary of CAN Channel Object using
'Vector' 'CANcaseXL 1' Channel 1.

Filter History:Filters are open for Standard and Extended IDs.
Block Range added. Starting ID:0 Ending ID:2047
Accept Range added. Starting ID:500 Ending ID:625

Configuring Multiplexing
Use multiplexing to combine multiple signals into one signal and transmit it
on the CAN bus. A multiplexed message can have three types of signals:

Standard signal
This signal is always active. You can create one or more standard
signals.

Multiplexor signal
Also called the mode signal, it is always active and its value determines
if a multiplexed signal is packed. You can create only one multiplexor
signal per message.

Multiplexed signal
This signal is active when its multiplex value matches the value of a
multiplexor signal. You can create one or more multiplexed signals in
a message.

When you multiplex a message, you can specify both standard and
multiplexed signals. While standard signals are always packed into the
message, a multiplexed signal is either packed or ignored, depending on
whether its multiplex value matches the value of a multiplexor signal.

To create a multiplex message use a CAN database with message definitions
that already contain multiplex signal information. This example shows you
how to specify the different multiplex signals using a database constructed
specifically for this purpose. This database has one message with these
signals:

CAN Communication Session

1 SigA: A multiplexed signal with a multiplex value of 0.
2 SigB: Another multiplexed signal with a multiplex value of 1.

3 MuxSig: A multiplexor signal, whose incoming value determines which of
the two multiplexed signals are active (are packed) in the message.

To try this example, create messages and signals using definitions in your
own database.

1 Create a CAN database:

d = canDatabase('Mux.dbc')

Note This is an example database constructed for creating multiplex
messages. To try this example, use your own database.

2 Create a CAN message:
m = canMessage(d, 'Msg')
The message displays all its properties including multiplex signals:

can.Message (Normal Frame)

ID: 250 / FA (Hex)
Extended: O
Name: 'Msg’

Data: [0o o0 o0 O O O 0 0]
[OO 00O 00 OO0 00 00 00 00] (Hex)

MuxSig: 0 (Muxor)
SigA: 0 (Active)
SigB: N/A

SigA is active (or packed into the message) because its multiplex current
value of 0 matches the value of MuxSig (which is 0).

3 Change the value of the MuxSig to 1:

1-23

1 Getting Started

m.MuxSig = 1

The message displays its properties with changed signal states:

can.Message (Normal Frame)

ID: 250 / FA (Hex)
Extended: 0
Name: 'Msg’

Data: [1 0o 0 o o0 o0 o0 0]
[01 00 00 OO0 00 00 00 00] (Hex)

MuxSig: 1 (Muxor)
SigA: N/A
SigB: 0 (Active)

SigB is active because its multiplex value of 1 matches the current value of
MuxSig (which is 1).

4 Change the value of MuxSig to 2:

m.MuxSig = 2

the message displays its properties with changed signal states:

can.Message (Normal Frame)

ID: 250 / FA (Hex)
Extended: 0
Name: 'Msg'

Data: [2 0 0 0 O 0 0 0]
[02 00 00 00 00 00 00 00 1 (Hex)

MuxSig: 2 (Muxor)
SigA: N/A
SigB: N/A

Neither of the signals are active because the current value of MuxSig does
not match the multiplex value of either SigA or SigB.

1-24

CAN Communication Session

Refer to the canMessage function to learn more about creating messages.

Configuring Silent Mode

The SilentMode property of a CAN channel specifies that the channel can
only receive messages and not transmit them. Use this property to observe all
message activity on the network and perform analysis without affecting the
network state or behavior. See SilentMode for more information.

1 Create a CAN channel object canch and display its properties:

get(canch)

MATLAB displays all properties on the configured channel:

General Settings:
BusStatus = 'N/A'
Database = []
InitializationAccess = 1
MessageReceivedFcn = []
MessageReceivedFcnCount = 1
MessagesAvailable = 0
MessagesReceived = 0
MessagesTransmitted = 0
ReceiveErrorCount = 0
Running = 0
SilentMode = 0
TransmitErrorCount = 0

Device Settings:
Device = 'CANcaseXL 1'

DeviceChannellIndex = 1
DeviceSerialNumber = 24811
DeviceVendor = 'Vector'

Transceiver Settings:
TransceiverName = 'CANpiggy 251mag (Highspeed)'
TransceiverState = 16

Bit Timing Settings:
BusSpeed = 500000

1-25

1 Getting Started

SJw = 1
TSEG1 = 4
TSEG2 = 3

NumOfSamples = 1

2 Change the SilentMode property of the channel to true:

canch.SilentMode = true

3 To see the changed property value, type:

get(canch)

MATLAB displays all properties on the configured channel as before, with
the changed SilentMode property value:

SilentMode = 1

1-26

Accessing the Toolbox

Accessing the Toolbox

In this section...

“Exploring the Toolbox” on page 1-27
“Getting Help” on page 1-27

“Viewing Examples” on page 1-27

Exploring the Toolbox

You can access the Vehicle Network Toolbox from the MATLAB command
window directly by using any Vehicle Network Toolbox function. To see a list
of all the functions available, type:

help vnt

Getting Help

The toolbox functions are grouped by usage. Click a specific function for more
information.

To access the online documentation for the Vehicle Network Toolbox, type:

doc vnt

To access the reference page for a specific function, type:
doc function_name
Viewing Examples
Examples in this guide use the Vector CANCaseXL device, with the XL

Hardware Driver Version 6.3. The Examples index in the Help browser lists
these examples.

1-27

1 Getting Started

1-28

Using a CAN Database

* “Vector CANdb Support” on page 2-2
® “Loading and Creating Messages Using the .dbc File” on page 2-3
® “Other Uses of the CAN Database” on page 2-5

2 Using a CAN Database

Vector CANdb Support

The Vehicle Network Toolbox supports the use of a Vector CAN database. A
.dbc file contains definitions of CAN messages and signals.

Use the Vehicle Network Toolbox toolbox to look up message and signal

information and build messages using the information defined in the database
file.

2-2

Loading and Creating Messages Using the .dbc File

Loading and Creating Messages Using the .dbc File

In this section...
“Loading the CAN Database” on page 2-3

“Creating a CAN Message” on page 2-3
“Adding a Database to a CAN Channel” on page 2-4

Loading the CAN Database

To use a CANdD file, load the database into your MATLAB session. At the
MATLAB command prompt, type:

db = canDatabase(’filename.dbc’)

Here db is a variable you chose for your database handle and filename. dbc is
the actual file name of your CAN database. If your CAN database in not in
the current working directory, type the path to the database:

db = canDatabase(’path\filename.dbc’)

This command returns a database object you can use to create and interpret
CAN messages using information stored in the database. Refer to the
canDatabase function for more information.

Creating a CAN Message

This example shows you how to create a message using a database constructed
specifically for this purpose. This database has one message, Msg. To try this
example, create messages and signals using definitions in your own database.

1 Create the CAN database object:

d = canDatabase('Mux.dbc')
2 Create a CAN message using the message name in the database:
message = canMessage(d, 'Msg')

3 Create a CAN message using the message ID in the database:

2 Using a CAN Database

messagel = canMessage(d, 250, false)

Adding a Database to a CAN Channel
To add a database to a CAN channel, type:

canch.Database = 'Mux.dbc'

For more information, see the Database property.

Other Uses of the CAN Database

Other Uses of the CAN Database

In this section...

“Viewing Messages Information in the CAN Database” on page 2-5
“Viewing Signal Information in a CAN Message” on page 2-6

“Attaching a CAN Database to Existing Messages” on page 2-6

Viewing Messages Information in the CAN Database

You can get information about the definition of messages in the database,
a single message by name, or a single message by ID. To get message
information about all messages in the database, type:

msgInfo = messageInfo(database name)

This command returns the message structure of information about messages
in the database. For example:

msgInfo =

5x1 struct array with fields:
Name
Comment
ID
Extended
Length
Signals

To get information about a single message by message name, type:

msgInfo = messagelnfo(database name, 'message name')

This command returns information about the message as defined in the
database. For example:

msgInfo = messageInfo(db, 'EngineMsg')

msgInfo =

2 Using a CAN Database

2-6

Name: 'EngineMsg’

Comment: '
ID: 100

Extended: 0O

Length: 8

Signals: {2x1 cell}

Here the function returns information about message with name EngineMsg
in the database db. You can also use the message ID to get information a
message. For example, to view the example message given here by inputting
the message ID, type:

msgInfo = messageInfo(db, 100, false)

This command provides the database name, the message ID, and a Boolean
value for the extended value of the ID.

To learn how to use it and work with the database, see messageInfo function.

Viewing Signal Information in a CAN Message

You can get information about all signals in a CAN message. Provide the
message name or the ID as a parameter in the command.:

sigInfo = signalInfo(db, 'EngineMsg')

You can also get information about a specific signal by providing the signal
name:

sigInfo = signalInfo(db, 'EngineMsg', 'EngineRPM")

To learn how to use this property and work with the database, see the
signallnfo function.

Attaching a CAN Database to Existing Messages

You can attach a .dbc file to messages and apply the message definition
defined in the database. Attaching a database allows you to view the messages
in their physical form and use a signal-based interaction with the message
data. To attach a database to a message, type:

Other Uses of the CAN Database

attachDatabase (message name, database name)

Note If your message is an array, all messages in the array are associated
with the database that you attach.

You can also dissociate a message from a database so that you can view the
message in its raw form. To clear the attached database from a message, type:

attachDatabase (message name, [])

Note The database gets attached even if the database does not find the
specified message. Even though the database is still attached to the message,
the message is displayed in its raw mode.

For more information, see the attachDatabase function.

2-7

2 Using a CAN Database

2-8

Monitoring CAN Message
Tratfic

e “The CAN Tool” on page 3-2
e “Using the CAN Tool” on page 3-6

3 Monitoring CAN Message Traffic

The CAN Tool

In this section...
“Opening the CAN Tool” on page 3-2
“Parts of the CAN Tool” on page 3-2

Opening the CAN Tool

The Vehicle Network Toolbox provides a graphical user interface that displays
CAN message traffic on selected CAN channels.

To open the CAN Tool type canTool at the MATLAB command line.

Parts of the CAN Tool

The CAN Tool is a simple interface that displays all messages received by a
specific CAN channel. The tool has the following fields:

3-2

The CAN Tool

(o1
— Configurstion
Channel: I".-'a-:t-:lr - CANcaseXL 1 - Channel 1 j Buz Speed: ISDDDDD bps
Start | Pause | Stop | Export lﬂessages...l [~ Show only unigue messages
Timestamp | 1D | Length | Data

14.1%5&52 0x03ESx 8 0x33 5C 78 88 SC Bs DI F1 -
14.192886 0x0320 g 0x3B 58 &D 80 57 B4 D3 El j
14.187&5 0x0Z58 & 0x33 4A &8 8& SF B7

14.18358 0x0180 4 0x25 45 54 73

14.17888 0x00CE 2 0xz2% 3D

14._05500 0x03ESx 8 0x3& 4F 71 83 SA E1l D4 F4

14.05071 003220 g 0x30 4E &4 85 SC BA D1 DF

14._ 04580 0x0Z58 & 0x38 4C &5 75 SB B3

14 04183 00120 4 0x2C 48 5C 72

14.037&1 0x00CE z 0x2% 38

13.24g18 0x0ZESx 2 Ox4& 55 &6 85 AS EF DA ED

13.541581 0x0320 8 0x3F 4A &3 87 SE BA CD DC

13.8388¢ 0x0Z58 & 0x2C 4& &4 82 3C E7

13.93388 0x0180 4 0x2Z% 4D 5E 72

13.23010 0x00CE 2 0x2F 28

12.830475 0x0ZESx 8 0x43 5Z gD 8D AT BT D7 EF

13.79932 003220 2 0x2E B2 &8 7F 24 EO C8 EZ

13.79583 0x0Z58 & 0xZB 5Z &5 T7& S& AF

13.73208 00120 4 0x30 47 58 7%

13.7a8841 0x00CE 2 OxzZ1 44

13.£89878 0x0ZESx 2 0x34 5C &8 8F 27 BED CE E4

13.69471 0x0320 8 0Ox3A 53 &8 T7F SA AE D4 EE -

el

Configuration

Channel

Displays all available CAN devices and channels on your system.

Bus Speed

Displays the bus speed of the selected CAN channel. You can also
change the bus speed of a channel. See Configuring the Channel Bus

Speed.

3-3

3 Monitoring CAN Message Traffic

3-4

Messages

Start
Click this button to view message activity on the selected channel.

Pause

Click this button to pause the display of message activity on the selected
channel.

Stop
Click this button to stop displaying messages on the selected channel.

Export Messages
Click this button to export the current message list on the selected
channel up to the latest message.

Show only unique messages
Select this check box to show the most recent instance of each message
received on the selected channel. If you select this check box, the tool
displays a simplified version of the message traffic. In this view, you
will not see messages scroll up, but each message refreshes its data
with each timestamp. If you do not select this option the tool displays
all instances of all messages in the order that the selected channel
receives them.

Messages Table

Timestamp
Displays the time, relative to the start time, that the device receives the
message. The start time when you click Start in the tool starts at 0.

ID

Displays the message ID. This field displays a number in hexadecimal
format for the ID and:

¢ Displays numbers only for standard IDs.
¢ Appends with an x for an extended ID.
¢ Displays an r for a remote frame.

¢ Displays error for messages with error frames.

The CAN Tool

Length
Displays the length of the message in bytes.

Data
Displays the data in the message in hexadecimal format.

3 Monitoring CAN Message Traffic

3-6

Using the CAN Tool

In this section...

“Viewing Messages on a Channel” on page 3-6
“Configuring the Channel Bus Speed” on page 3-6
“Saving the Message Log File” on page 3-7

“Viewing Unique Messages” on page 3-7

Viewing Messages on a Channel

To view messages on a channel:

1 Open the CAN Tool and select the device and channel connected to your
CAN bus from the Channel list.

2 The CAN Tool defaults to the bus speed set in the device driver. You can
also configure a new bus speed. See Configuring the Channel Bus Speed

3 Click Start.
Click Pause to pause the display.

Click Stop to stop the display.

Configuring the Channel Bus Speed

Configure the bus speed when the speed of your network differs from the
default value of the channel. You require initialization is access for the
channel to configure the bus speed, otherwise the option is disabled. If you
enter an invalid value, it will return to the last valid value.

To configure a new bus speed:

1 Type the desired value in the Bus Speed field.

2 Press Enter.

Using the CAN Tool

Saving the Message Log File

To save a log file of the messages currently displayed in the window click
Export Messages. The tool saves the messages in a MATLAB file in your
current working directory.

Each time you export the messages to a file, CAN Tool saves them as VNT
CAN Log.mat with sequential numbering.

Viewing Unique Messages

To view the most recent instance of each unique message received on the
channel, click Show only unique messages. In this view, you will not see
messages scroll up, but each message refreshes its data and timestamp with
each new instance.

3 Monitoring CAN Message Traffic

3-8

1ol
— Configurstion
Channel: I".'a-:t-:lr - CANcaseXL 1 - Channel 1 j Buz Speed: ISDDDDD bps
Start | Pause | Stop | Export rﬂessages...l F?.U.?.!Y..FE!’]!)’...H.ﬁ.i.ﬁ'e-.'.ﬁ..mﬁﬁ%g
Timestamp | 1D | Length | Data

108.87785 0x03E8x a8 Ox41 4D &% 80 SA B& CE E4

108.87Z80 0x0320 g 0x33 48 &0 TA Al B3 DZ ED

108.86857 0x0Z258 = 0xZF 51 &0 83 S7 AA

108._86427 0x01s50 4 O0xZF 3F &4 B1

108._86027 0x00C8 2 0x31 48

Use this feature to get a snapshot of the IDs of messages that selected channel

receives. Use this information to analyze the specific messages.

When the Show only unique messages check box is selected, the tool
continues to receive message actively. This simplified view allows you to focus

in on a specific messages and analyze them.

To export messages when the Show only unique messages check box is
selected, click Pause and then click Export messages. You cannot save the
unique message list, but this operation saves the complete message log in

the window.

Using the Vehicle Network
Toolbox Block Library

® “Introducing the Vehicle Network Toolbox Block Library” on page 4-2
® “Opening the Vehicle Network Toolbox Block Library” on page 4-3

¢ “Building Simulink Models to Transmit and Receive Messages” on page 4-5

4 Using the Vehicle Network Toolbox™ Block Library

4-2

Introducing the Vehicle Network Toolbox Block Library

This chapter describes how to use the Vehicle Network Toolbox block library.
The block library consists of these blocks:

CAN Configuration — Configure the settings of a CAN device.
CAN Pack — Pack signals into a CAN message.

CAN Receive — Receive CAN messages from a CAN Bus.
CAN Transmit — Transmit CAN messages to a CAN Bus.

CAN Unpack — Unpack signals from a CAN message.

The Vehicle Network Toolbox block library is a tool for simulating message

traffic on a CAN network, as well for using the CAN bus to send and receive
messages. You can use blocks from the block library with blocks from other
Simulink libraries to create sophisticated models.

To use the Vehicle Network Toolbox block library you require Simulink,

a tool for simulating dynamic systems. Simulink is a model definition
environment. Use Simulink blocks to create a block diagram that represents
the computations of your system or application. Simulink is also a model
simulation environment. Run the block diagram to see how your system
behaves. If you are new to Simulink, read the Simulink Getting Started Guide
in the Simulink documentation to understand its functionality better.

For more detailed information about the blocks in the Vehicle Network
Toolbox block library, see Blocks Reference.

Opening the Vehicle Network Toolbox Block Library

Opening the Vehicle Network Toolbox Block Library

In this section...

“Using the canlib Command from the MATLAB Command Window” on
page 4-3

“Using the Simulink Library Browser” on page 4-4

Using the canlib Command from the MATLAB
Command Window
To open the Vehicle Network block library, enter

canlib

at the MATLAB Command Window. MATLAB displays the contents of the
library in a separate window.

E! Library:canlib

File Edit View Format Help

=0l x|

DEHE| $BR|e ¢ |22 REE

CAN Communication

Ready

~ CAM
-~ f‘."nN 4 CAN Msg Message Data
Lontiguration Unpad-:
CAN Configuration CAN Unpadk
CAN il CAN
- Dsta 1 CAN I
Recsive viessage V=g
CAN Msg Fad
CAN Receive GAN Padk
CAN
CAN M
v=s Transmit
CAN Transmit
100% |Locked

4 Using the Vehicle Network Toolbox™ Block Library

4-4

Using the Simulink Library Browser

To open the Vehicle Network Toolbox block library, start the Simulink Library
Browser from MATLAB. Then select the library from the list of available

block libraries displayed in the browser.

To start the Simulink Library Browser, enter

simulink

at the MATLAB Command Window. MATLAB opens the browser window.
The left pane lists available block libraries, with the basic Simulink library
listed first, followed by other libraries listed in alphabetical order under it. To
open the Vehicle Network Toolbox block library, click its icon and select CAN

Communication for the CAN blocks.

E! Simulink Library Browser

File Edit View Help

=0l x|

H 0= w “J Enter search term = ﬂ

- W] Simscape ;I
-] Simulink 3D Animation
E Simulink Control Design
E Simulink Design Optimization
E Simulink Design Verifier
E Simulink Extras

E Simulink Veerification and Validation CAN Recsive

E Stateflow

E System Identification Teolbox CAN Transmit
E Target Support Package FMS
E Target Support Package IC1 =
E Target Support Package TC2 CAN Unpack
E Target Support Package TC6

-l Utiities
B--E Wehicle Network Toolbox

B AN Communication

ﬂ Video and Image Processing Blockset
- ig| xPC Target =

Libraries. Library: Vehicle Network Toolbox/CAN Communication | Search Rest 4| b

Block Description

specified CAN device.

Showing: Vehide Network Toolbox/CAM Communication

Vehicle Network ToolboxiCAN Communication/CAN Configuration: Configure the properties for the 2
-

Simulink loads and displays the blocks in the library.

Building Simulink® Models to Transmit and Receive Messages

Building Simulink Models to Transmit and Receive

Messages

In this section...

“Build a Message Transmit Model” on page 4-5
“Build a Message Receive Model” on page 4-11
“Save and Run The Model” on page 4-19

Build a Message Transmit Model
This section provides an example that builds a simple model using the Vehicle

Network Toolbox blocks with other blocks in the Simulink library. The
example 1llustrates how to send data via a CAN network.

e Use virtual CAN channels to transmit messages.

e Use the CAN Configuration block to configure your CAN channels.

® Use the Constant block to send data to the CAN Pack block.

e Use a CAN Transmit block to send the data to the virtual CAN channel.
Use this section in combination with the “Build a Message Receive Model”
on page 4-11, and the “Save and Run The Model” on page 4-19 to build your
complete model and run the simulation.

e “Step 1: Open the Block Library” on page 4-6

e “Step 2: Create a New Model” on page 4-6

e “Step 3: Drag the Vehicle Network Toolbox Blocks into the Model” on
page 4-7

e “Step 4: Drag Other Blocks to Complete the Model” on page 4-8
e “Step 5: Connect the Blocks” on page 4-9
® “Step 6: Specify the Block Parameter Values” on page 4-9

4-5

4 Using the Vehicle Network Toolbox™ Block Library

4-6

Step 1: Open the Block Library

To open the Vehicle Network Toolbox block library, start the Simulink Library
Browser. Now choose Vehicle Network Toolbox from the list of available
libraries displayed in the browser.

To start the Simulink Library Browser, enter

simulink

at the MATLAB Command Window. The left pane in the Simulink Library
Browser lists the available block libraries. To open the Vehicle Network
Toolbox block library, click its entry icon. Then, click CAN Communication
to open the CAN blocks. See Using the Simulink Library Browser for more
information.

Step 2: Create a New Model

To use a block, add it to an existing model or create a model.

For this example, create a model by clicking the New model button on the
toolbar.

Building Simulink® Models to Transmit and Receive Messages

E! Simulink Library Browser i |
File Edit View Help

JJD = = JJIEntersearchterm | 44
Lib]Mettmode] ietwork Toolbox/CAN Communication |1|P

EE Vehicle Network Toolbox ;I =
¢ L CAN Communication CAN Configurstion
CAN Pack
=._] CANRecsive
] CAN Transmit

J momiSy = CAN Unpack -
- -

Vehicle Network Toolbox/CAN Communication/CAN Configuration: 2
sl Configure the properties for the pecified CAN device.|

*

Block Description

s |

You can also select the File menu in the Simulink Library Browser and select
New > Model. Simulink opens an empty model window on the display. To
name the new model, use the Save option.

Step 3: Drag the Vehicle Network Toolbox Blocks into the
Model

To use the blocks in a model, click a block in the library and, holding the
mouse button down, drag it into the model window. For this example, you
need one instance each of the CAN Configuration, CAN Pack, and the CAN
Transmit block in your model.

4-7

Using the Vehicle Network Toolbox™ Block Library

BILIES W7 can communication =loj x|
Fe g3t vew heo Fle Edi Vew Smusten Fomat Tods Heb

D G = feresescnnen 5100 (5 DIGEG| Lol |es |2z b nfo fea =
Lrares ary: |1|r
- |
- I Smiechancs P \'.:n: u\-ur‘n 1
* g SimPowerSystems ey
-] Sirscape
- Do canpun S
W Smuie ControiDeag -—\— -
- [§i] Simuteic Deaign Optmizatien E AN Pesaive
T Sl Deaign Veritier

4 I S Exiras e Vitusl 1

b MR CAN g, | .
W simuink verification ana Vakdsion El s \ Pats a1 g [CAN Mg el 1
Simule = —=
N Stmefow |
B s s g e T——w e
- Tarpet Suppen Package Fus

- W Tarpet Supoent Package 11
- [l Troet Supgent Pacinge TC2
-] Target Suppert Package TCR

W vt
=~ [Vehicie Network Tobax

- CAN Communcasen

- | Vielwo and image Procesang Blociast
- T Target -

X

Vehile Hetwork ToolbowCAN CommuniestionCAN Transmit Trassme CAN Usssages =

||-.n | uaieey the apecified CAN devics

=l

Shorarsg: Vehuce P bk Toban/CAN Communcation | Peady [16% ledets A

Drag Vehicle Network Toolbox™ Blocks into Model Window

Step 4: Drag Other Blocks to Complete the Model

This example requires a source block that feeds data to the CAN Pack block.
Add a Constant block into your model.

JRT-TE T o Commenication S il
Fle Edt View Mep Fle £t Wiew Seustion Fomst Todks Help

D @ o || seorenem ——~] 94 2] O SE@S 0| csd 2z b s s =]
L
+ i Semutnc -
— Commenty Uand Blocks

Lontruows

Dscontnuties

— Discrete

— Loge: and BE Cperations
Lookus Taies
Math Optrascns

— Masdel Venfzaton

— Modml Wi Litites

. |> Mataage: ZAN Mg, Mater Virtusl 1
e FHE T granawa 159) M AN Mt 1

Purts & Sutayatams

BEEDQOR®E

Sinaldircuies - AN Faa AN Tranama
~ Signul Anuteg
~ Siks
Sources
~ User-Defnes Funceens Bigital Clok
[Addtnal s & Dacrrte
+- Wl Aeroapace Bockeet [Eame} ermem
- I Communcations Dociset
Control Sysiem Tookax
[nemmi | (=) romvomenm .
b
onstant: Guput e e Con 3 =
' + pacamster. H'Conslant vaie' i 8 vecisr and Tilapret vecor parameiees a8 1.0 2, leat
the CONMEAN vakie &4 8 1D ArHy. OMErwise, ubut & MAr wih Té Same Smanaicns &4 the
cosatant vaue =1
Showng: Smunk/Sour ces | ety 100% Jodeds A

Drag Constant Block to the Model Window

Building Simulink® Models to Transmit and Receive Messages

Step 5: Connect the Blocks

Make a connection between the Constant block and the CAN Pack block.
When you move the pointer near the output port of the Constant block, the
pointer becomes a cross hair. Click the Constant block output port and,
holding the mouse button, drag the pointer to the input port of the CAN Pack
block. Then release the button.

In the same way, make a connection between the output port of the CAN Pack
block and the input port of the CAN Transmit block.

The CAN Configuration block does not connect to any other block. This block
configures the CAN channel used by the CAN Transmit block to transmit
the packed message.

Step 6: Specify the Block Parameter Values

You set parameters for the blocks in your model by double-clicking on the
block.

Configure the CAN Configuration Block. Double-click the CAN
Configuration block to open its parameters dialog box. Set the:

® Device to Vector Virtual 1 (Channel 1).

* Bus speed to 500000.

* Acknowledge Mode to Normal.

Click Apply, then OK.

Configure the CAN Pack Block. Double-click the CAN Pack block to open
its parameters dialog box. Set the:

® Data is input as to raw data.

e Name to the default value CAN Msg.

¢ Identifier type to the default Standard (11-bit identifier) type.

¢ Identifier to 500.

4-9

4 Using the Vehicle Network Toolbox™ Block Library

4-10

¢ Length (bytes) to the default length of 8.

Click Apply, then OK.

Configure the CAN Transmit Block. Double-click the CAN Transmit to
open its parameters dialog box. Set Device to Vector Virtual 1 (Channel

1). Click Apply, then OK.

Configure the Constant Block. Double-click the Constant block to open its
parameters dialog box. On the Main tab, set the:

* Constant valueto [1 2 3 4 5 6 7 8].

e Sample time to 0.01 seconds.
On the Signal Attributes tab, set the Output data type to uints8.

Your model looks like this figure:

Building Simulink® Models to Transmit and Receive Messages

=] caN_Communication B[]
File Edit Wiew Simulation Forrat Tools Help
k"] L .
D|Dﬂ§|éﬂﬁ|4==b{r|f>fl|b II'ID.D INorrnaI ﬂ|f
Vector Virtual 1
Channsl 1
Bus speed: 500000
CAMN Configuration
-~ uintd . IMessage: CAN Mg, CAN_MESSAGE | ., Vector Virtusl 1
= P0et= iondand (D 500 R B CANME o annel 1
Constant
CAN Padc CAM Transmit
Ready 100% |FixedstepDiscrete v

Build a Message Receive Model

This section provides an example that builds a simple model using the Vehicle
Network Toolbox blocks with other blocks in the Simulink library. The
example illustrates how to receive data via a CAN network.

e Use a virtual CAN channel to receive messages.

® You use the CAN Configuration block to configure your virtual CAN
channels.

4-11

4 Using the Vehicle Network Toolbox™ Block Library

4-12

e Use the CAN Receive block to receive the message sent by the blocks built
in “Build a Message Transmit Model” on page 4-5.

¢ Use a Function—Call Subsystem block that contains the CAN Unpack block.
This function takes in the data from the CAN Receive block and uses the
parameters of the CAN Unpack to unpack your message data.

e Use a Scope block to show the transfer of data visually.

Use this section in combination with the “Build a Message Transmit Model”
on page 4-5, and the “Save and Run The Model” on page 4-19 to build your
complete model and run the simulation.

e “Step 7: Drag the Vehicle Network Toolbox Blocks into the Model” on page
4-12

e “Step 8: Drag Other Blocks to Complete the Model” on page 4-13
e “Step 9: Connect the Blocks” on page 4-16
e “Step 10: Specify the Block Parameter Values” on page 4-17

Step 7: Drag the Vehicle Network Toolbox Blocks into the
Model

For this example, you need one instance each of the CAN Configuration, the
CAN Receive, and the CAN Unpack block in your model. However, you add
only the CAN Configuration and the CAN Receive blocks here. Add the CAN
Unpack block into the Function—Call Subsystem described in “Step 8: Drag
Other Blocks to Complete the Model” on page 4-13.

Note Configure a separate CAN channel for the CAN Receive and CAN
Unpack blocks.

Building Simulink® Models to Transmit and Receive Messages

[~ sinulink Library Browser

Fle Edt View Hep

D& = |J|me-\:nw
TeRGKTAN

4]

Fle Edt View Smuston Formst Todks Help

D@ nR e d |2z sfir e = Hi

=lo) x|

Lisrares
[T
S -
a1 i SmPowertysems
- Il Simscape
+- I Semant 30 Anaton
W Simuink Costrod Design
- [Smutnik Deaign Optimzaten
N Sl Deaign Veritier
- I S Exiras
W Simuink verification ana Vakdsten
N Staehow
W System Mentitcation Bobox
4 Target Suppent Package Fus
- I Tarpet Suppen Package 1K1
- [l Trpet Suppent Pacinge TC2
-] Target Suppert Package TCR
W vt
=~ [Vehicie Network Toobax
- CAN Cemmuncaen
- i Vilno and image Procesang Blociaet
- s gt

®

Viehicle letwork ToolbonC AN Communication CAN Recenve: Aecens CAN Utasszes
ey the apecfed CAN davicn

Showing: vehde Metwork Toobas TAN Communcation

-
4

T

N\

\ CaN Configuraiant

amar Virusl +
—
[pe—y)

Can Configurson

et cap Masiage CAN Mg o vEssase | vector Vietust 1
BTME e 1D, 2 M ot Mg Chasnel 1
o Fen CaN Traam
Ve Vinusl £
Chasral 2

[pe—)

Vemw Vinal 1y

S 10a. all
Ext 10y omTAN Mig

AN Hwomen

O B

Drag Vehicle Network Toolbox™ Blocks into Model Window

Step 8: Drag Other Blocks to Complete the Model

Use the Function—Call Subsystem block from the Simulink Ports &
Subsystems block library to build your CAN Message pack subsystem.

1 Drag the Function—Call Subsystem block into the model.

1= |

£t vew bl
D& = |J|me-\:nam Kl Y
i
B s

— Commenly Uand Blocks

Contruout

Dacontinuties
~ Discrete

Lisrary:

[=] comtiatie tusmpmm

[A] eraue
iI* Eratles Sotupimn

— Ligic and RE Opmeations
Lookus Taties
Math Oprasons
— Usaei Venseaton
— Uil Wil Lt
Forta & Sutaystema
Sqnsltirbutes
— Sl Anutng
—~ Siks
Sources
~ User-Defined Funceens
[Addiicnsl s & Diserels
+- W Aercapace Bockee
- I Communcations Diociset

L
L F Funmizn-Call Gerarmer

.
i P

[Conrol System Toekax

=

| sesccnra|¥
a]

[T

7 runncn m\hq

ol x|
Fle Edt View Smuston Formst Todks Help

D@ mR e d |2z sfir e = Hi

s

eostaning & fuaction.cal ligger part, inport asd ostport block

£

Shening: Smulrk/Ports & Subsystems.

amar Virusl ©
—
[epe—y)

Can Configursaon

CAN VESSAGELL -,y gfoctor Virtual 1

gaie Mesiage CAN Mg
BTME e 1D, 2 Chesnel 1
Comeint
T Fea CaN Traam
Ve Vinual
Chasral 2

TunctienCall
[am—

I B T

4-13

4 Using the Vehicle Network Toolbox™ Block Library

2 Double-click the Function—Call Subsystem block to open the subsystem
model.

=

File Edit Wiew Simulation Format Tools Help

DSEHE| s BB 4= 2= » mfioo | [Noma

function
In1 Out1
Ready [100% [[|FixedStepDiscrete v

3 Drop the CAN Unpack block from the Vehicle Network Toolbox block
library in this subsystem.

4-14

Building Simulink® Models to Transmit and Receive Messages

L5 simutak ubrary Browser L -

Fle Edt view bHep

uD = ”I—Lm«mxnum

Tl

Liraries

e
o I Smsechacics
B srowersyatems

W System entfcaten Tobes
4 I Target Suppen Pactage Fus
- I Tanget Suppent Paciage 101
B Troet Supcen Paciage TC2
- [Torget Suppert Backage TR
W s
- W venicee Network Toobox
' CAN Communicaten
- N Videss and image Processing Blockest
- P g

-
Can Canngursnicn
e Pa
53 crreine
e [
[d canvscan

<]

File

DIGEA@ bl |ez 3 [22)r 500 [lem

fundsen

CAN Unpe:

Bk Descretien

C =t ean BT S 0 e

Ry oo [FeeSeOsoste

=1

Ursaage

Vehicte Network ToolboauCAN Communication'CAN Unpack: Urgack sat from 8 CAN

To see the results of the simulation visually, drag the Scope block from the
Simulink block library into your model.

Fle Edt View Hep

Fle Ede Wiew Smustion Fomst Todk Help

x|

uD = ”Fm«mmnm—m

EIf, Y

D)F@&@ &2l |cd |22k afon [l

=&

Lisraries

B smowic
|- Commenty Uand Blocis
| Lettruous

| Dscentnutes
|- Discrete
|- Lagic and Bt Operations

|- owces

|- User-Detned Functens

[Addiicnsl s & Diserele
- i Aercapace iociast
- I Communcatcns Bocisst
Rl Comtrol System ok

=] owm

E Flnssing Smnps
(D) o

B Descreien

@ Simusink Sinks/Seope

Showing: Smek ke

]

amar Vil 1
Chasnal 1
B swwed 223000

Can Configuraon

et Message. CAN
e e tges ST

aady I

o g Virtal 1

Chasnel 1

AN Trasarar

Drag The Scope Block into Model Window

4-15

Using the Vehicle Network Toolbox™ Block Library

Step 9: Connect the Blocks
1 Connect the CAN Msg output port on the CAN Receive block to the Inl

input port on the Function—Call Subsystem block.

function()

Vector Virtual 1 ﬂ:';;"'-_ -
Channel 2 ; e Gt
Std. 1Ds: all 1] oubls |
Ext. Ds: a1 “AN Mg .

— " Function-Call

_ Subsystem

CAM Recsive

2 Rename Inl to CAN Msg
3 Connect the f() output port on the CAN Receive block to the function()

input port on the Function—Call Subsystem block.

—_— T — e
".- double 2

' functionty
- Quti

Vector Virual 1 gy
Channel 2 T —
Std. D= all doubje ™
Ext. IDs: =1l AN Mea

Functicn-Call
Subsystemn

CAN Receive

4 Rename the Function—Call Subsystem to CAN Unpack Subsystem.
5 Connect the CAN Unpack Subsystem output port to the input port on the

Scope block.

Your model looks like this figure:

4-16

Building Simulink® Models to Transmit and Receive Messages

=] caN_Communication B[]
File Edit Wiew Simulation Faorrat Tools Help
S L .
D SE&| s ERes a9 » =foo | [Nm e [l
Vector Virtual 1
Channsl 1
Bus speed: 500000
CAMN Configuration
uintd . Message: CAN Msg CAN_MESSAGE, Vector Virtusl 1
-C- Dat CAN M = P CAM L
®17%= standard ID: 5007 0 » "8 Channel 1
Constant
CAN Facdk CAN Transmit
Wector Virtual 1
Channel 2
Bus speed: 500000
CAN Configuration1
Vector Virtual 1 iy [ooeb
Channel 2 :
Std. 1Ds: all_ double - function() | doutie
Ext. IDs: s”mN Msg J1CAN Mzg Ot
CAN Receive CAM Unpad: Scope
Subsystem
Ready [100% [|FixedstepDiscrete v

The CAN Configuration block does not connect to any other block. This block
configures the CAN channel used by the CAN Receive block to receive the

CAN message.

Step 10: Specify the Block Parameter Values

You set parameters for the blocks in your model by double-clicking on the

block.

Configure the CAN Configuration Block. Double-click the CAN
Configuration block to open its parameters dialog box. Set the:

4-17

4 Using the Vehicle Network Toolbox™ Block Library

4-18

1 Device to Vector Virtual 1 (Channel 2).
2 Bus speed to 500000.
3 Acknowledge Mode to Normal.

Click Apply, then OK.

Configure the CAN Receive Block. Double-click the CAN Receive block to
open its Parameters dialog box. Set the :

1 Device to Vector Virtual 1 (Channel 2).
2 Sample time to 0.01.

3 Number of messages received at each timestep to All.

Click Apply, then OK.

Configure the CAN Unpack Subsystem. Double-click the CAN Unpack
subsystem to open the Function—Call Subsystem model. In the model, double
click the CAN Unpack block to open its parameters dialog box. Set the:

1 Data is input as to raw data.
2 Name to the default value CAN Msg.

3 Identifier type to the default Standard (11-bit identifier) type.

4 Identifier to 500.

5 Length (bytes) to the default length of 8.

Click Apply, then OK.

Your subsystem looks like this figure:

Building Simulink® Models to Transmit and Receive Messages

E!CAN_Communicatinn!(M Unpack Subsystem - | Ellil

File Edit View Simulaton Format Tools Help

D SsES| tBR|E 4|22 »r =foo [Noma

)

functicn

dou o Iessage: CAN Msg doyh
(= M2 andare ID: 500 D5 = Sl

CAN Msg Out1

CAN Unpadk

Ready 10086 |FixedstepDiscrete A

Save and Run The Model

This section shows you how to save the models you have built in the previous
two sections, “Build a Message Transmit Model” on page 4-5 and “Build a
Message Receive Model” on page 4-11.

e “Step 11: Save the Model” on page 4-19

e “Step 12: Run the Simulation” on page 4-20

e “Step 13: View the Results” on page 4-21

Step 11: Save the Model

Before you run the simulation, save your model by clicking the Save icon or
selecting File > Save from the menu.

4-19

4 Using the Vehicle Network Toolbox™ Block Library

4-20

Step 12: Run the Simulation

To run the simulation, click the Start button on the model window toolbar.
Alternatively, you can use the Simulation menu in the model window and

choose the Start option.

When you run the simulation, the CAN Transmit block gets the message from
the CAN Pack block. It then transmits it via Virtual channel 1. The CAN
Receive block on Virtual Channel 2 receives this message and hands it to the

CAN Unpack block to unpack the message.

While the simulation is running, the status bar at the bottom of the model

window updates the progress of the simulation.

File Edit “ew Simulation Format Tools Help

=10l x|

DieE&| sE2R|(c= 4 (=20 =fo | [Nom i 2l

Vector Virtual 1
Channel 1
Bus speed: 500000

CAN Cenfiguration

uintd

h 4

Censtant

Data

Message: CAN hsg,

C. CAN_MESSAGE
L

Standard ID: 500 58

Vector Virtual 1
Channel 2

Bus speed: 500000

CAN Configuration1

CAN Padk

Vector Virtual 1
Channel 2
Std. 10=: all_

Ext. IDs: all AN M=g

o2

CAN Receive

Runining

CAN Unpadk

Subsystem

A yeestor Virtual 1
SANMER channel 1

CAN Transmit

[100% [1]

T=2.4%0

[FixedStepDiscrete

Simulation Status

Building Simulink® Models to Transmit and Receive Messages

Step 13: View the Results

Double-click the Scope block to view the message transfer on a graph.

Bl
2ELer ABE EE 5 -

4-21

4 Using the Vehicle Network Toolbox™ Block Library

4-22

Function Reference

CAN Channel Construction (p. 5-2)

CAN Channel Configuration (p. 5-3)

CAN Channel Execution (p. 5-4)

CAN Channel Status (p. 5-5)

CAN Database (p. 5-6)

CAN Message Handling (p. 5-7)

Information and Help (p. 5-8)

Graphical Tools (p. 5-9)
Vector Informatik (p. 5-10)

Functions related to constructing a
CAN channel

Functions related to configuring a
CAN channel

Functions related to executing
function on a configured CAN
channel.

Functions related to checking the
CAN channel status

Functions related to the CAN
dtabase

Functions related to working with
CAN messages

Functions related to displaying help
information

Functions related to CAN Tools

Functions specifically related to
Vector hardware functionality

5 Function Reference

CAN Channel Construction

canChannel Construct CAN channel connected
to selected device

5-2

CAN Channel Configuration

CAN Channel Configuration

get Return property values

set Configure property values

5-3

S

Function Reference

5-4

CAN Channel Execution

receive
receiveRaw
replay
start

stop

transmit

Receive messages from CAN bus
Receive raw messages from CAN bus
Retransmit messages from CAN bus
Set CAN channel online

Set CAN channel offline

Send CAN messages to CAN bus

CAN Channel Status

CAN Channel Status

5-5

S

Function Reference

CAN Database

canDatabase
messageInfo

signallnfo

Create handle to CAN database file
Information about CAN messages

Information about signals in CAN
message

CAN Message Handling

CAN Message Handling

attachDatabase

canMessage
extractAll
extractRecent
extractTime

pack

unpack

Attach CAN database to messages
and remove CAN database from
messages

Build CAN message based on
user-specified structure

Select all instances of message from
array of messages

Select most recent message from
array of messages

Select messages occurring within
specified time range from array of
messages

Pack signal data into CAN message

Unpacks signal data from message

5-7

5 Function Reference

Information and Help

canHWInfo Information on available CAN
devices
canSupport Generate technical support log

5-8

Graphical Tools

Graphical Tools

canTool Open CAN Tool

5-9

S

Function Reference

5-10

Vector Informatik

These functions are specific to the Vector Informatik CAN device.

configBusSpeed
filterAcceptRange

filterBlockRange

filterReset

filterSet

Set bit timing rate of CAN channel

Set range of CAN identifiers to pass
acceptance filter

Set range of CAN identifiers to block
via acceptance filter

Open CAN message acceptance
filters

Set specific CAN message acceptance
filter configuration

Functions — Alphabetical
List

attachDatabase

6-2

Purpose

Syntax

Arguments

Description

Remarks

Examples

See Also

Attach CAN database to messages and remove CAN database from
messages

attachDatabase (message, database)
attachDatabase (message, [])

message The name of the CAN message that you
want to attach the database to or remove
the database from.

database The name of the database (.dbc file) that
you want to attach to the message or
remove from the message.

attachDatabase (message, database) attaches the specified
database to the specified message. You can then use signal-based
interaction with the message data, interpreting the message in its
physical form.

attachDatabase (message, []) removes any attached database from
the specified message. You can then interpret messages in their raw
form.

If the specified message is an array, then the database attaches itself
to each entry in the array. The database attaches itself to the message
even if the message you specified does not exist in the database. The
message then appears and operates like a raw message. To attach the
database to the CAN channel directly, edit the Database property of
the channel object.

candb = canDatabase('C:\Database.dbc')
msg = receive(canch, Inf)
attachDatabase(messsage, candb)

canDatabase, receive

canChannel

Purpose

Syntax

Arguments

Description

Remarks

Construct CAN channel connected to selected device

canch = canChannel('vendor', 'device', devicechannelindex)
vendor The name of the CAN device vendor. Specify
the vendor name as a string.
device The CAN interface that you want to connect
to.

devicechannelindex A numeric channel on the specified device.

canch The CAN channel object the you create.

canch = canChannel('vendor', 'device', devicechannelindex)
returns a CAN channel connected to a device from a specified vendor.

For Vector products, device is a combination of the device type and a
device index, such as 'CANCaseXL 1'. For example, if there are two
CANcardXL devices, device can be 'CANcardXL 1' or 'CANcardXL 2'.

Use canHWInfo to obtain a list of available devices.

The Vehicle Network Toolbox currently supports Vector devices.

® CANboardXL_PCIe
® CANboardXL_PXI
® CANcardX

® CANcardXL

® CANcaseXL

® Virtual

6-3

canChannel

6-4

Examples

See Also

canch canChannel('Vector', 'CANCaseXL 1',1)
canch = canChannel('Vector', 'Virtual 1',2)

Notes You cannot use the same variable to create multiple channels
sequentially. Clear any channel in use before using the same variable
to construct a new CAN Channel.

You cannot create arrays of CAN channel objects. Each object you
create must exist as its own individual variable.

canHWInfo

canDatabase

Purpose
Syntax

Description

Examples

See Also

Create handle to CAN database file
candb = canDatabase('dbfile.dbc')

candb = canDatabase('dbfile.dbc') creates a handle to the specified
database file dbfile.dbc. You can specify just a file name, a full path,
or a relative path. MATLAB looks for dbfile.dbc on the MATLAB
path. Vehicle Network Toolbox supports the Vector CAN database
(.dbc) files.

candb = canDatabase('C:\Database.dbc')

canMessage

canHWInfo

6-6

Purpose
Syntax

Description

Examples

See Also

Information on available CAN devices

out canHWInfo()

out canHWInfo() returns information about CAN devices and
displays the information on a per vendor and channel basis. Use get on
the output of canHWInfo to obtain more detailed results.

info = canHWInfo()
get(info)
ToolboxName: 'Vehicle Network Toolbox'
ToolboxVersion: '1.0 (R2009a)'
MATLABVersion: '7.8 (R2009a)'
VendorInfo: [1x1 can.vector.VendorInfo]

canChannel

canMessage

Purpose

Syntax

Arguments

Description

Examples

Build CAN message based on user-specified structure

message = canMessage(id, extended, datalength)
message = canMessage(database, messagename)
message = canMessage(database, id, extended)

id The ID of the message that you specify.

extended Indicates whether the message ID is of standard or
extended type. The Boolean value is true if extended
or false if standard.

datalength The length of the data of the message, in bytes.
Specify from 0 through 8.

database handle to the CAN database containing the message
definition.

messagename The name of the message definition in the database.

message The message object returned from the function.

message = canMessage(id, extended, datalength) creates and
returns a CAN message object, from the raw message information.

message = canMessage(database, messagename) constructs a
message using the message definition of the specified message, in the
specified database.

message = canMessage(database, id, extended) constructs a
message using the message definition of the specified ID and type, in
the specified database.

message = canMessage (2500, true, 4)
To construct a message using CAN database message definitions, create

a database object using the canDatabase function and then construct
your message.

canMessage

candb = ('c:\database.dbc')
message = canMessage (candb, 'messagename')
message = canMessage (candb, 800, false)

See Also attachDatabase, canDatabase, extractAll, extractRecent,
extractTime, pack, unpack

6-8

canSupport

Purpose Generate technical support log
Syntax canSupport()
Descripl‘ion canSupport () returns diagnostic information for all installed CAN

devices and saves output to the text file cansupport.txt in the current
working directory.

For online support of Vehicle Network Toolbox software, visit the
toolbox page on the MathWorks Web site.

http://www.mathworks.com/products/vehicle-network/

canTool

Purpose Open CAN Tool
Syntax canTool
Description canTool starts the CAN Tool, which displays live CAN message traffic.

Use the CAN Tool to view message traffic using a selected CAN device
and channel. You can also export messages to a log file via this tool.

For more information about this tool, refer to Chapter 3, “Monitoring
CAN Message Traffic”.

6-10

configBusSpeed

Purpose

Syntax

Arguments

Description

Remarks

Set bit timing rate of CAN channel

configBusSpeed(canch, busspeed)
configBusSpeed(canch, busspeed, sjw, tsegl, tseg2,

numberofsamples)
canch The CAN channel object that you want to set the
bit timing rate for.
busspeed The user-specified bit timing rate for the specified
object.
sjw The synchronization jump width. This value is the

maximum value of time bit adjustments.

tseg1 The length of time at the start of the sample point
within a bit time.

tseg2 The length of time at the end of the sample point
within a bit time.

numberofsamples The specified count of bit samples used.

configBusSpeed(canch, busspeed) sets the speed of the CAN channel
in a direct form that uses baseline bit timing calculation factors.

configBusSpeed(canch, busspeed, sjw, tsegl, tseg2,
numberofsamples) sets the speed of the CAN channel canch to
busspeed using the specified bit timing calculation factors to control
the timing in an advanced form.

Unless you have specific timing requirements for your CAN connection,
use the direct form of configBusSpeed. Also note that you can set the
bus speed only when the CAN channel is offline. The channel must also
have initialization access to the CAN device.

Synchronize all nodes on the network for CAN to work successfully.
However, over time, clocks on different nodes will get out of sync, and
must resynchronize. SUW specifies the maximum width (in time) that

6-11

configBusSpeed

6-12

Examples

See Also

you can add to tseg1 (in a slower transmitter), or subtract from tseg2
(in a faster transmitter) to regain synchronization during the receipt
of a CAN message.

canch = canChannel('Vector', 'CANCaseXL 1',1)
configBusSpeed(canch,250000)

canch = canChannel('Vector', 'CANCaseXL 1',1)
configBusSpeed(canch,500000,1,4,3,1)

canChannel

extractAll

Purpose

Syntax

Arguments

Description

Remarks

Select all instances of message from array of messages

[extracted, remainder] = extractAll(message, messagename)
[extracted, remainder] extractAll (message, id, extended)

message An array of CAN message objects that you specify
to parse and find the specified messages by name
or id.

messagename The name of the message that you specify to
extract.

id The ID of the message that you specify to extract.

extended Indicates whether the message ID is a standard

or extended type. The Boolean value is true if
extended and false if standard.

extracted An array of CAN message objects returned with
all instances of id found in the message.

remainder A CAN message object containing all messages in
the original input message with all instances of
id removed.

[extracted, remainder] = extractAll(message, messagename)
parses the given array message, and returns all instances of messages
matching the specified message name.

[extracted, remainder] = extractAll(message, id, extended)
parses the given array message, and returns all instances of messages

matching the specified ID with the specified standard or extended type.

You can specify id as a cell array of message names or a vector of
identifiers. For example, if you pass id in as [250 5000], [false true],
extractAll returns every instance of both CAN message 250 and
message 500 that it finds in the message array. If any id in the vector

6-13

extractAll

1s an extended type, set extended to true and as a vector of the same
length as id.

Examples [msgOut, remainder] =
extractAll (message, 'msgil')
[msgOut, remander] =
extractAll(message, ['msgil' 'msg2' 'msg3'])
[msgOut, remainder] =
extractAll(message, 3000, true)
[msgOut, remainder] =
extractAll (message, [200 5000],[false true])

See Also extractRecent, extractTime

6-14

extractRecent

Purpose

Syntax

Arguments

Description

Remarks

Select most recent message from array of messages

extracted = extractRecent(message)
extracted = extractRecent(message, messagename)
extracted = extractRecent(message, id, extended)

message An array of CAN message objects that you specify to
parse and find the specified messages by name or id.

messagename The name of the message that you specify to extract.
id The id of the message that you specify to extract.

extended Indicates whether the message ID is a standard
or extended type. The Boolean value is true if
extended and false if standard.

extracted An array of CAN message objects returned with the
most recent instance of id found in the message.

extracted = extractRecent(message) parses the given array
message and returns the most recent instance of each unique CAN
message found in the array.

extracted = extractRecent(message, messagename) parses the
specified array of messages and returns the most recent instance
matching the specified message name.

extracted = extractRecent(message, id, extended) parses the
given array message and returns the most recent instance of the
message matching the specified ID with the specified standard or
extended type.

You can specify id as a vector of identifiers. For example, if you pass
id in as [250 500], extractRecent returns the latest instance of both
CAN message 250 and message 500 if it finds them in the message
array. By default, all identifiers in the vector are standard CAN
message identifiers unless extended is true. If any id in the vector is

6-15

extractRecent

an extended type, then extended i1s true and is a vector of the same
length as id.

Examples msgOut = extractRecent(message)
msgOut = extractRecent(message, 'msgl’')
msgOut = extractRecent(message, ['msgl' 'msg2' msg3'])
msgOut = extractRecent(message, 3000, true)
msgOut = extractRecent(message, [400, 5000], [false true])

See Also extractAll, extractTime

6-16

extractTime

Purpose

Syntax

Arguments

Description

Remarks

Examples

See Also

Select messages occurring within specified time range from array of
messages

extracted = extractTime(message, starttime, endtime,

msgRange)

message An array of CAN message objects.

starttime The beginning of the time range in seconds that
you specify. Returns messages with a timestamp
greater than or equal to the specified start time.

endtime The end of the time range in seconds that you
specify. Parses messages with timestamp up to
the specified end time, including the specified end
time.

extracted An array of CAN message objects returned with

all messages that occur within and including
starttime and endtime.

extracted = extractTime(message, starttime, endtime,
msgRange) parses the array message and returns all messages with a
timestamp within the specified starttime and endtime, including the
starttime and endtime

Specify the time range in increasing order from starttime to endtime.
If you must specify the largest available time, endtime also accepts
Inf as a valid value. The earliest acceptable time you can specify for
starttime is 0.

msgRange = extractTime(message, 5, 10.5)
msgRange = extractTime(message, 0, 60)
msgRange = extractTime(message, 150, Inf)

extractAll, extractRecent

6-17

filterAcceptRange

Purpose Set range of CAN identifiers to pass acceptance filter
Syntax filterAcceptRange(canch, rangestart, rangeend)
Arguments canch The CAN channel that you want to set the filter for.

rangestart The first identifier of the range of message IDs that
the filter accepts.

rangeend The last identifier of the range of message IDs that
the filter accepts.

Description filterAcceptRange(canch, rangestart, rangeend) sets the
acceptance filter for standard identifier CAN messages. It allows
messages within the given range on the CAN channel canch to pass.
rangestart and rangeend establish the beginning and end of the
acceptable range.

Notes

® You can configure message filtering only when the CAN channel is
offline.

® CAN message filters initialize to fully open.

e filterReset makes the acceptance filters fully open.

e filterAcceptRange supports only standard (11-bit) CAN identifiers.

® Set the values from rangestart through rangeend in increasing
order.

e filterAcceptRange and filterBlockRange work together by
allowing and blocking ranges of CAN messages within a single filter.
You can perform both operations multiple times in sequence to
custom configure the filter as desired.

6-18

filterAcceptRange

Remarks

Examples

See Also

When you call filterAcceptRange on an open or reset filter, it
automatically blocks the entire standard CAN identifier range, allowing
only the desired range to pass. Subsequent calls to filterAcceptRange
open additional ranges on the filter without blocking the ranges
previously allowed.

canch = canChannel('Vector', 'CANCaseXL 1',1)
filterAcceptRange(canch,600,625)
filterAcceptRange(canch,705,710)

filterBlockRange, filterReset, filterSet

6-19

filterBlockRange

6-20

Purpose

Syntax

Arguments

Description

Set range of CAN identifiers to block via acceptance filter

filterBlockRange(canch, rangestart, rangeend)

canch The CAN channel that you want to set the filter for.

rangestart The first identifier of the range of message IDs that
the filter starts blocking at.

rangeend The last identifier of the range of message IDs that
the filter stops blocking at.

filterBlockRange(canch, rangestart, rangeend) allows you to
block messages within a given range by setting an acceptance filter.

Notes

® You can configure message filtering only when the CAN channel is
offline.

¢ CAN message filters initialize to fully open.

e Use filterReset to make the acceptance filters fully open.

e filterBlockRange supports only standard (11-bit) CAN identifiers.

® The values from rangestart through rangeend must be in increasing
order.

e filterBlockRange and filterAcceptRange work together by
blocking and allowing ranges of CAN messages within a single filter.
You can perform both operations multiple times in sequence to
custom configure the filter as desired.

filterBlockRange

Examples You can set the filter to block or accept messages within a specific range.

canch = canChannel('Vector', 'CANCaseXL 1',1)
filterBlockRange(canch, 500, 750)
filterAcceptRange(canch,600,625)
filterAcceptRange(canch,705,710)
filterBlockRange(canch,1075,1080)

See Also filterAcceptRange, filterReset, filterSet

6-21

filterReset

6-22

Purpose
Syntax

Description

Examples

See Also

Open CAN message acceptance filters
filterReset(canch)

filterReset(canch) resets the CAN message filters on the CAN
channel canch for both standard and extended CAN identifier types.
Then all messages of all identifier types can pass.

This function does not work if the channel is online. Make sure that the
channel is offline before calling filterReset.

Reset the message filters as shown:

canch = canChannel('Vector', 'CANCaseXL 1',1)
filterBlockRange(canch, 500, 750)
filterAcceptRange(canch,600,625)
filterAcceptRange(canch,705,710)
filterBlockRange(canch,1075,1080)
filterReset(canch)

filterAcceptRange, filterBlockRange, filterSet

filterSet
|

Purpose Set specific CAN message acceptance filter configuration
Syntax filterSet(canch, code, mask, idtype)
Arguments canch The CAN channel that you want to set the filter for.
code The value required for each bit position of the
identifier.
mask The bits in the identifier that are relevant to the filter.
idtype A string specifying either a standard or an extended

CAN message id type.

Description filterSet(canch, code, mask, idtype) sets the CAN message
acceptance filter to the specified code and mask. You also must specify
the CAN identifier type idtype on the CAN channel canch.

Notes

® You can configure message filtering only when the CAN channel is
offline.

® CAN message filters initialize to fully open.

e Use filterReset to make the acceptance filters fully open.

e filterSet supports either standard or extended CAN identifiers.

® To configure filtering for standard CAN identifiers, use either
filterSet or filterAcceptRange/filterBlockRange as both
choices operate on a single filter.

® To configure filtering for extended CAN identifiers, use only
filterSet.

6-23

filterSet

Examples canch = canChannel('Vector', 'CANCaseXL 1',1)
filterSet(canch,500,750, 'Standard')
filterSet(canch,2500,3000, 'Extended"')

See Also filterAcceptRange, filterBlockRange, filterReset

6-24

get

Purpose
Syntax

Description

Examples

Return property values

out get (obj)

out = get (obj) returns the structure out, where each field name is
the name of a property of the specified object and each field contains
the value of that property.

Configure a CAN channel:

canch = canChannel('Vector', 'CANCaseXL 1',1)

Call get on the CAN channel object to obtain the properties of the
configured CAN channel:

get (canch)

Configure a CAN message:

message = canMessage (250, true, 8)

Call get on the message object to obtain the properties of the configured
message:

get (message)
Configure a CAN database:

candb = canDatabase('C:\Database.dbc')

call get on the database to obtain the properties of the configured
database:

get (candb)

6-25

messageinfo

Purpose Information about CAN messages

Syntax msgInfo = messagelInfo(candb)
msgInfo = messageInfo(candb, 'msgName')
msgInfo = messageInfo(candb, id, extended)

Arguments candb The database containing the CAN messages that you
want information about.
msgName The name of the message you want information about.
id The numeric identifier of the specified message.

extended Indicates whether the message ID is in standard or
extended type. The Boolean value is true if extended
and false if standard.

Description msgInfo = messageInfo(candb) returns information about CAN
messages in the specified database candb.

msgInfo = messageInfo(candb, 'msgName') returns information
about the specified message 'msgName' in the specified database candb.

msgInfo = messageInfo(candb, id, extended) returns information
about the message with the specified standard or extended ID in the
specified database candb.

Examples candb = canDatabase('c:\Database.dbc')
msgInfo = messagelInfo(candb)
msgInfo = messagelInfo(candb, 'msgName')
msgInfo messageInfo(candb, 500, false)

See Also canDatabase, canMessage, signalInfo

6-26

pack

Purpose

Syntax

Arguments

Description

Examples

See Also

Pack signal data into CAN message

pack (message, value, startbit, signalsize, byteorder)

message

value

startbit

signalsize

byteorder

The CAN message structure that you specify for the
signal to be packed in.

The value of the signal you specify to be packed in
the message.

The signal’s starting bit in the data. This is the least
significant bit position in the signal data. Accepted
values for startbit are from 0 through 63.

The length of the signal in bits. Accepted values for
signalsize are from 1 through 64.

The signal byte order format. Accepted values are
'LittleEndian' and 'BigEndian'.

pack(message, value, startbit, signalsize, byteorder) takes
specified input parameters and packs them into the message.

pack(message, 25, 0, 16, 'LittleEndian')

canMessage, extractAll, extractRecent, extractTime, unpack

6-27

receive

Purpose

Syntax

Arguments

Description

Examples

See Also

6-28

Receive messages from CAN bus

message = receive(canch, messagesrequested)

canch The CAN channel from which to receive the
message.

messagesrequested The maximum count of messages to receive.
The specified value must be a nonzero and
positive, or Inf.

message An array of CAN message objects received
from the channel.

message = receive(canch, messagesrequested) returns an array of
CAN message objects received on the CAN channel canch. The number
of messages returned is less than or equal to messagesrequested. If
fewer messages are available than messagesrequested specifies, the
function returns the currently available messages. If no messages are
available, the function returns an empty array. If messagesrequested
is infinite, the function returns all available messages.

To understand the elements of a message, refer to canMessage.
canch = canChannel('Vector', 'CANCaseXL 1',1)
start(canch)
message = receive(canch,5)

To receive all messages, type:

message = receive(canch,Inf)

canChannel, canMessage, transmit

receiveRaw

Purpose

Syntax

Arguments

Description

Examples

Receive raw messages from CAN bus

message = receiveRaw(canch, messagesrequested)

canch The CAN channel from which to receive the
message.
messagerequested The maximum count of messages to receive.

The specified value must be nonzero and
positive, or Inf.

message An array of message structures received from
the CAN channel.

message = receiveRaw(canch, messagesrequested) returns an
array of CAN message structures received on the CAN channel
canch. The number of messages returned is less than or equal

to messagesrequested. If fewer messages are available than
messagesrequested specifies, the function returns the currently
available messages. If no messages are available, the function returns
an empty array. If nessagesrequested is infinite, the function returns
all available messages.

To understand the elements of a message, refer to canMessage.

Assuming that you have messages on a channel and an attached
database, you can receive a raw message, convert it to an object and
apply database definitions by typing:

canch = canChannel('Vector', 'CANCaseXL 1',1)
start(canch)

message = receiveRaw(canch,5)

message = canMessage(msgStructs)
attachDatabase(message, canDatabase('Database.dbc'))

6-29

receiveRaw

Note This example is not an exact workflow.

To receive all messages in the raw structure, type:

message = receiveRaw(canch,Inf)

Note Receive raw messages when you are concerned about
performance issues.

See Also canChannel, canMessage, receive, transmit

6-30

replay

Purpose

Syntax

Arguments

Description

Remarks

Examples

Retransmit messages from CAN bus

replay(canch, message)

canch The CAN channel that you specify to transmit
the messages.

message An array of message objects to replay.

replay(canch, message) retransmits the message or messages
message on the channel canch, based on the relative differences of their
timestamps.

To understand the elements of a message, refer to canMessage.

If you have a loopback connection between two channels, you can:

¢ Transmit messages 2 seconds apart from one channel.
® Receive them on the other channel.

e Use replay to retransmit the messages with the original delay.

The timestamp differentials between messages in the two receive
arrays are equal.

chi canChannel('Vector', 'CANcaseXL 1', 1)
ch2 = canChannel('Vector', 'CANcaseXL 1', 2)
start(cht)

start(ch2)

msgTx1 = canMessage (500, false, 8)

msgTx2 = canMessage (750, false, 8)
transmit(ch1, msgTx1)

pause(2)

transmit(ch1, msgTx2)

msgRx1 = receive(ch2, Inf)

replay(canch2, msgRx1)

6-31

replay

pause(2)
msgRx2 = receive(ch1, Inf)

See Also canChannel, canMessage, receive, transmit

6-32

set

Purpose
Syntax

Description

Examples

Configure property values
set (obj, propertyname, propertyvalue)

set (obj, propertyname, propertyvalue) configures the specified
property, propertyname, on the object obj, to the value specified in
propertyvalue.

To set a CAN channel property:

canch = canChannel('Vector', 'CANcaseXL 1', 1)
set (canch, 'SilentMode', true)

To set a CAN message property:

message = canMessage (250, 8, true)
set (message, 'Remote', true)

To set a CAN message signal property:

candb = canDatabase('C:\Database.dbc')
message = canMessage(candb, 'Battery_Voltage')
set (message, 'BatVlt', 9.3)

6-33

signalinfo

6-34

Purpose

Syntax

Arguments

Description

Examples

Information about signals in CAN message

SigInfo = signalInfo(candb, 'msgName')
SigInfo = signallInfo(candb, id, extended)
SigInfo = signallInfo(candb, id, extended, 'signalName')

candb The database containing the signals that you want
information about.

msgName The name of the message that contains the signals that
you want information about.

id The numeric identifier of the specified message that
contains the signals you want information about.

extended Indicates whether the message ID is in standard or
extended type. The Boolean value is true if extended
and false if standard.

signalName The name of the specific signal that you want

information about.
sigInfo The signal information object returned from the

function.

SigInfo = signalInfo(candb, 'msgName') returns information about
the signals in the specified CAN message msgName, in the specified
database candb.

SigInfo = signalInfo(candb, id, extended) returns information
about the signals in the message with the specified standard or
extended ID id, in the specified database candb.

SigInfo = signalInfo(candb, id, extended, 'signalName')
returns information about the specified signal 'signalName' in the
message with the specified standard or extended ID id, in the specified
database candb.

SigInfo
SigInfo

signalInfo(candb, 'Battery_Voltage')
signalInfo(candb, 'Battery_Voltage', 196608, true)

signalinfo

SigInfo = signalInfo(candb, 'Battery_Voltage', 196608, true, 'BatVl

See Also canDatabase, canMessage, messageInfo

6-35

start

6-36

Purpose
Syntax

Description

Examples

See Also

Set CAN channel online
start(canch)

start(canch) starts the CAN channel canch on the CAN bus to send
and receive messages. The CAN channel remains online unless:

® You call stop on this channel.

¢ The channel clears from the workspace.

canch = canChannel('Vector', 'CANCaseXL 1',1)
start(canch)

stop

stop

Purpose
Syntax

Description

Examples

See Also

Set CAN channel offline
stop(canch)

stop(canch) stops the CAN channel canch on the CAN bus. The CAN
channel also stops running when you clear canch from the workspace.

canch = canChannel('Vector', 'CANCaseXL 1',1)

start(canch)
stop(canch)

start

6-37

transmit

6-38

Purpose

Syntax

Arguments

Description

Remarks

Examples

Send CAN messages to CAN bus

transmit(canch, message)

canch The CAN channel that you specify to transmit the
message.
message The message or an array of messages that you specify

to transmit via a CAN channel.

transmit(canch, message) sends the array of messages onto the bus
via the CAN channel.

To understand the elements of a message, refer to canMessage.
The Transmit ignores the Timestamp property and theError property.

message = canMessage (250, false, 8)
message.Data = ([45 213 53 1 3 213 123 43])
canch = canChannel('Vector', 'CANCaseXL 1', 1)
start(canch)

transmit(canch, message)

To transmit an array, construct messagel and message2 as in the
example, and type:

transmit(canch, [message, messagel message2?])

To transmit messages on a remote frame, type:

message = canMessage (250, false 8, true)
message.Data = ([45 213 53 1 3 213 123 43])
message.Remote = true

canch = canChannel('Vector', 'CANCaseXL 1', 1)
start(canch)

transmit(canch, message)

transmit

See Also canChannel, canMessage, receive

6-39

unpack

6-40

Purpose

Syntax

Arguments

Description

Examples

See Also

Unpacks signal data from message

value = unpack(message, startbit, signalsize, byteorder,
datatype)

message The CAN message structure that you specify for the
signal to be unpacked from.

startbit The signal’s starting bit in the data. This is the
least significant bit position in the signal data.
Accepted values for starbit are from 0 through 63.

signlsize The length of the signal in bits. Accepted values for
signalsize are from 1 through 64.

byteorder The signal binary or binblock format. Accepted
values are LittleEndian and BigEndian.

datatype The data type that you want to get the unpacked
value in.

value The value of the message that you specify to be
unpacked.

value = unpack(message, startbit, signalsize, byteorder,
datatype) takes a set of input parameters to unpack the signal value
from the message and returns the value as output.

value = unpack(message, 0, 16, 'LittlegEndian', 'int16')

canMessage, extractAll, extractRecent, extractTime, pack

Property Reference

CAN Channel Base Properties Apply to CAN channels on all devices
(p. 7-2)

Device-Specific Properties (p. 7-4) Apply to CAN channels on specific
devices

7 Property Reference

CAN Channel Base Properties

Channel Status Properties (p. 7-2)

CAN Message Properties (p. 7-2)
CAN Database Properties (p. 7-3)
Receiving Messages (p. 7-3)

Error Logging (p. 7-3)

Channel Status Properties

BusStatus

Database
InitializationAccess
Running

SilentMode

CAN Message Properties

Data
Database
Error
Extended
ID
Remote

Timestamp

Setting properties that specify
different status of the CAN channel

Defining actions based on available
messages on a CAN Channel

Properties for receiving and
transmitting error messages

Determine status of CAN bus

Store CAN database information
Determine control of device channel
Determine status of CAN channel

Specify if channel is active or silent

Set CAN message data

Store CAN database information
CAN message error frame
Identifier type for CAN message
Identifier for CAN message

Specify CAN message remote frame

Display message received timestamp

CAN Channel Base Properties

CAN Database Properties

Messages

Name (Database)
Path

Receiving Messages

MessageReceivedFcn

MessageReceivedFcnCount

MessagesAvailable

MessagesReceived

MessagesTransmitted

Error Logging

ReceiveErrorCount

TransmitErrorCount

Stores message names from CAN
database

CAN database name

Display CAN database directory
path

Specify function to run

Specify number of messages
available before function is triggered

Display number of messages
available to be received by CAN
channel

Display number of messages received
by CAN channel

Display number of messages
transmitted by CAN channel

Display number of received errors
detected by channel

Display number of transmitted
errors by channel

7 Property Reference

Device-Specific Properties

Vector Device Settings (p. 7-4)
Transceiver Settings (p. 7-4)

Bit Timing Settings (p. 7-4)

Vector Device Settings

Device
DeviceChannellIndex
DeviceSerialNumber

DeviceVendor

Transceiver Settings

TransceiverName

TransceiverState

Bit Timing Settings

BusSpeed
NumOfSamples

SJW

Properties displaying the Vector
device information

Properties displaying the CAN
channel transceiver information

Properties defining the bit timing
and segmentation

Display CAN channel device type
Display CAN device channel index
Display CAN device serial number

Display device vendor name

Display name of CAN transceiver

Display state or mode of CAN
transceiver

Display speed of CAN bus

Display number of samples available
to channel

Display synchronization jump width
(SJW) of bit time segment

Device-Specific Properties

TSEG1 Display amount that channel can
lengthen sample time

TSEG2 Display amount that channel can
shorten sample time

7-5

7 Property Reference

7-6

Properties — Alphabetical
List

BusSpeed

Purpose

Description

Characteristics

Values

Examples

See Also

Display speed of CAN bus

The BusSpeed property determines the bit rate at which messages are
transmitted. You can set BusSpeed to an acceptable bit rate using the
configBusSpeed function.

Usage CAN channel
Read only Always
Data type Numerical

The default value is assigned by the vendor driver. To change the bus
speed of your channel, use the configBusSpeed function and pass the
channel name and the value as input parameters.

To change the current BusSpeed of the CAN channel object canch to
250000, type:

configBusSpeed(canch, 250000)
Functions
canChannel, configBusSpeed

Properties
NumOfSamples, SUW, TSEG1, TSEG2

BusStatus

Purpose Determine status of CAN bus
Description The BusStatus property displays information about the state of the
CAN bus.
Characteristics ygage CAN channel
Read only Always
Data type String
Values e N/A
® BusOff
® ErrorOff

® ErrorActive

See Also Functions

canChannel

8-3

Data

Purpose

Description

Characteristics

Values

Examples

See Also

Set CAN message data

Use the Data property to define your message data in a CAN message.

Usage CAN message
Read only Never
Data type Numeric

The data value is a uint8 array, based on the data length you specify
in the message.

To load data into a message, type:

message.Data = [23 43 23 43 54 34 123 1]

If you are using a CAN database for your message definitions, change
values of the specific signals in the message directly.

You can also use the pack function to load data into your message.

Functions

canMessage, pack

Database

Purpose

Description

Characteristics

Values

Examples

See Also

Store CAN database information

The Database property stores information about an attached CAN
database.

Usage CAN channel, CAN message
Read only For a CAN message property
Data type String

This property displays the database information that your CAN channel
or CAN message is attached to. This property displays an empty
structure, [], if your channel message is not attached to a database.
You can edit the CAN channel property, Database, but cannot edit

the CAN message property.

To see information about the database attached to your CAN message,
type:

message.Database

To set the database information on your CAN channel to
C:\Database.dbc, type

channel.Database = 'C:\Database.dbc'

Functions

attachDatabase, canChannel, canDatabase, canMessage

Device

Purpose

Description

Characteristics

Values

See Also

Display CAN channel device type

The Device property displays information about the device type to
which the CAN channel is connected.

Usage CAN channel
Read only Always
Data type String

Values are automatically defined when you configure the channel with
the canChannel function.

Functions

canChannel, canHWInfo

Properties

DeviceChannelIndex, DeviceVendor

DeviceChannellndex

Purpose

Description

Characteristics

Values

See Also

Display CAN device channel index

The DeviceChannelIndex property displays the channel index on which
the selected CAN channel is configured.

Usage CAN channel
Read only Always
Data type Numeric

Values are automatically defined when you configure the channel with
the canChannel function.

Functions

canChannel, canHWInfo

Properties

Device, DeviceVendor

8-7

DeviceSerialNumber

Purpose Display CAN device serial number
Description The DeviceSerialNumber property displays the serial number of the
CAN device.
Characteristics ygage CAN channel
Read only Always
Data type Numeric
Values Values are automatically defined when you configure the channel with

the canChannel function.

See Also Functions

canChannel, canHWInfo

Properties

Device, DeviceVendor

DeviceVendor

Purpose Display device vendor name
Description The DeviceVendor property displays the name of the device vendor.
Characteristics ygage CAN channel
Read only Always
Data type String
Values Values are automatically defined when you configure the channel with

the canChannel function.

See Also Functions

canChannel, canHWInfo

Properties

Device, DeviceChannelIndex, DeviceSerialNumber

Error

Purpose

Description

Characteristics

Values

8-10

See Also

CAN message error frame

The Error property is a read-only value that identifies the specified
CAN message as an error frame. The channel sets this property to true
when it receives a CAN message as an error frame.

Usage CAN message
Read only Always
Data type Boolean

e false — The message is not an error frame.

¢ true — The message is an error frame.

The Error property displays false, unless the message is an error
frame.

Functions

canMessage

Extended

Purpose

Description

Characteristics

Values

Examples

See Also

Identifier type for CAN message

The Extended property is the identifier type for a CAN message. It can
either be a standard identifier or an extended identifier.

Usage CAN message
Read only Always
Data type Boolean

e false — The identifier type is standard (11 bits).
¢ true — The identifier type is extended (29 bits).

To set the message identifier type to extended with the ID set to 2350
and the data length to 8 bytes, type:

message = canMessage (2350, true, 8)
You cannot edit this property after the initial configuration.

Functions

canMessage

Properties
ID

8-11

ID

Purpose Identifier for CAN message
Description The ID property represents a numeric identifier for a CAN message.
Characteristics ygage CAN message
Read only Always
Data type Numeric
Values The ID value must be a positive integer from:

¢ 0 through 2047 for a standard identifier
® 0 through 536,870,911 for an extended identifier

You can also specify a hexadecimal value using the hex2dec function.

Examples To configure a message ID to a standard identifier of value 300 and a
data length of 8 bytes type:

message = canMessage (300, false, 8)
See Also Functions
canMessage

Properties
Extended

8-12

InitializationAccess

Purpose

Description

Characteristics

Values

See Also

Determine control of device channel

The InitializationAccess property determines if the configured CAN
channel object has full control of the device channel. You can change
some property values of the hardware channel only if the object has full
control over the hardware channel.

Note Only the first channel created on a device is granted initialization

access.
Usage CAN channel
Read only Always
Data type Boolean

® Yes — Has full control of the hardware channel and can change the
property values.

® No — Does not have full control and cannot change property values.

Functions

canChannel

8-13

MessageReceivedFcn

8-14

Purpose

Description

Characteristics

Values

Examples

See Also

Specify function to run

Configure MessageReceivedFcn as a callback function to run a string
expression, a function handle, or a cell array when a specified number
of messages are available.

The MessageReceivedFcnCount property defines the number of
messages available before the configured MessageReceivedFcn runs.

Usage CAN channel
Read only Never
Data type Callback function

The default value is an empty string. You can specify the name of a
callback function that you want to run when the specified number of
messages are available.

canch.MessageReceivedFcn = @Myfunction
You can also use the set function to set the values of this property.

Functions

canChannel, set

Properties

MessageReceivedFcnCount, MessagesAvailable

MessageReceivedFcnCount

Purpose

Description

Characteristics

Values

Examples

See Also

Specify number of messages available before function is triggered

You configure MessageReceivedFcnCount to the number of messages
that must be available before a MessageReceivedFcn is triggered.

Usage CAN channel
Read only While channel is online
Data type Double

The default value is 1. You can specify a positive integer for your
MessageReceivedFcnCount

canch.MessageReceivedFcnCount = 55
You can also use the set function to set the values of this property.

Functions

canChannel, set

Properties

MessageReceivedFcn, MessagesAvailable

8-15

Messages

Purpose Stores message names from CAN database

Description This property stores the names of all the messages defined in the
selected CAN database.

Characteristics Usage CAN database
Read only Always
Data type String
Values The Messages property displays a cell array of strings. You cannot

edit this property.

See Also canDatabase, messageInfo

8-16

MessagesAvailable

Purpose

Description

Characteristics

Values

See Also

Display number of messages available to be received by CAN channel

The MessagesAvailable property displays the total number of
messages available to be received by a CAN channel.

Usage CAN channel
Read only Always
Data type Double

The value is 0 when no messages are available.

Functions

canChannel

Properties

MessagesReceived, MessagesTransmitted

8-17

MessagesReceived

8-18

Purpose

Description

Characteristics

Values

See Also

Display number of messages received by CAN channel

The MessagesReceived property displays the total number of messages
received since the channel was last started.

Usage CAN channel
Read only Always
Data type Double

The value is 0 when no messages have been received. This number
increments based on the number of messages the channel receives.

Functions

canChannel, canHWInfo

Properties

MessagesAvailable, MessagesTransmitted

MessagesTransmitted

Purpose

Description

Characteristics

Values

See Also

Display number of messages transmitted by CAN channel

The MessagesTransmitted property displays the total number of
messages transmitted since the channel was last started.

Usage CAN channel
Read only Always
Data type Double

The default is 0 when no messages have been sent. This number
increments based on the number of messages the channel transmits.

Functions

canChannel

Properties

MessagesAvailable, MessagesReceived

8-19

Name (Database)

Purpose CAN database name
Description The Name (Database) property displays the name of the database.
Characteristics ygage CAN database
Read only Always
Data type String
Values Name is a string value. This value is acquired from the name of the

database file. You cannot edit this property.

See Also Functions

canDatabase

Properties
Extended, ID

8-20

Name (Message)

Purpose CAN message name
Description The Name (Message) property displays the name of the message.
Characteristics ygage CAN message
Read only Always
Data type String
Values Name is a string value. This value is acquired from the name of the

message you defined in the database. You cannot edit this property
if you are defining raw messages.

See Also Functions

canMessage

Properties
Extended, ID

8-21

NumOfSamples

8-22

Purpose

Description

Characteristics

Values

See Also

Display number of samples available to channel

The NumOfSamples property displays the total number of samples
available to this channel. If you do not specify a value, the BusSpeed
property determines the default value.

Usage CAN channel
Read only Always
Data type Double

The value is a positive integer based on the driver settings for the
channel.

Functions

canChannel, configBusSpeed

Properties
BusSpeed, SUW, TSEG1, TSEG2

Path

Purpose Display CAN database directory path
Description The Path property displays the path to the CAN database.
Characteristics ygage CAN database
Read only Always
Data type String
Values The path name is a string value, pointing to the CAN database in your
directory structure.
See Also Functions
canDatabase

8-23

ReceiveErrorCount

8-24

Purpose

Description

Characteristics

Values

See Also

Display number of received errors detected by channel

The ReceiveErrorCount property displays the total number of errors
detected by this channel during receive operations.

Usage CAN channel
Read only Always
Data type Double

The value is 0 when no error messages have been received.

Functions

canChannel, receive

Properties

TransmitErrorCount

Remote

Purpose

Description

Characteristics

Values

Examples

See Also

Specify CAN message remote frame

Use the Remote property to specify the CAN message as a remote frame.

Usage CAN message
Read only Never
Data type Boolean

e [false} — The message is not a remote frame.

® true — The message is a remote frame.

To change the default value of Remote and make the message a remote
frame, type:

message.Remote = true

Functions

canMessage

8-25

Running

Purpose Determine status of CAN channel
Description The Running property displays information about the state of the CAN
channel.
Characteristics ygage CAN channel
Read only Always
Data type Boolean
Values e [false} — The channel is offline.

e true — The channel is online.

Use the start function to set your channel online.

See Also Functions

canChannel, start

8-26

SilentMode

Purpose

Description

Characteristics

Values

Examples

See Also

Specify if channel is active or silent

Specify whether the channel operates silently. By default SilentMode
is false. In this mode, the channel both transmits and receives
messages normally and performs other tasks on the network such as
acknowledging messages and creating error frames.

To observe all message activity on the network and perform analysis
without affecting the network state or behavior, change SilentMode to
true. In this mode, you can only receive messages and not transmit any.

Usage CAN channel
Read only Never
Data type Boolean

e [false} — The channel is in normal or active mode.

¢ true — The channel is in silent mode.

To configure the channel to silent mode, type:

canch.SilentMode = true

To configure the channel to normal mode, type:

canch.SilentMode = false
You can also use the set function to set the values of this property.

Functions

canChannel, set

8-27

SIW

8-28

Purpose

Description

Characteristics

Values

See Also

Display synchronization jump width (SJW) of bit time segment

In order to adjust the on-chip bus clock, the CAN controller may shorten
or prolong the length of a bit by an integral number of time segments.
The maximum value of these bit time adjustments are termed the
Synchronization Jump Width or SJW.

Usage CAN channel
Read only Always
Data type Numeric

The value of the SJW is determined by the specified bus speed.

Functions

canChannel, configBusSpeed

Properties
BusSpeed, NumOfSamples, TSEG1, TSEG2

Timestamp

Purpose

Description

Characteristics

Values

Examples

See Also

Display message received timestamp

The Timestamp property displays the time at which the message
was received on a CAN channel. This time is based on the receiving
channel’s start time.

Usage CAN message
Read only Never
Data type Double

Timestamp displays a numeric value indicating the time the message
was received, based on the start time of the CAN channel

To set the time stamp of a message to 12, type:

message.Timestamp = 12

Functions

canChannel, canMessage, receive, replay

8-29

TransceiverName

8-30

Purpose

Description

Characteristics

Values

See Also

Display name of CAN transceiver

The CAN transceiver translates the digital bit stream going to and
coming from the CAN bus into the real electrical signals present on
the bus.

Usage CAN channel
Read only Always
Data type String

Values are automatically defined when you configure the channel with
the canChannel function.

Functions
canChannel

Properties

TransceiverState

TransceiverState

Purpose Display state or mode of CAN transceiver

Description If your CAN transceiver allows you to control its mode, you can use the
TransceiverState property to set the mode.

Characteristics ygage CAN channel
Read only Never
Data type Numeric
Values The values are defined by the transceiver manufacturer. Refer to your

CAN transceiver documentation for the appropriate transceiver modes.
Possible modes representing the numeric value specified can be:

® high speed
® high voltage
® sleep

® wake up

See Also Functions

canChannel

Properties

TransceiverName

8-31

TransmitErrorCount

8-32

Purpose

Description

Characteristics

Values

See Also

Display number of transmitted errors by channel

The TransmitErrorCount property displays the total number of errors
detected by this channel during transmit operations.

Usage CAN channel
Read only Always
Data type Double

The value is 0 when no error messages have been transmitted.

Functions

canChannel, transmit

Properties

ReceiveErrorCount

TSEG1

Purpose

Description

Characteristics

Values

See Also

Display amount that channel can lengthen sample time

The TSEG1 property displays the amount in bit time segments that the
channel can lengthen the sample time to compensate for delay times
in the network.

Usage CAN channel
Read only Always
Data type Double

The value is inherited when you configure the bus speed of your CAN
channel.

Functions

canChannel, configBusSpeed

Properties
BusSpeed, NumberOfSamples, SUW, TSEG2

8-33

TSEG2

8-34

Purpose

Description

Characteristics

Values

See Also

Display amount that channel can shorten sample time

The TSEG2 property displays the amount of bit time segments the
channel can shorten the sample to resynchronize.

Usage CAN channel
Read only Always
Data type Double

The value is inherited when you configure the bus speed of your CAN
channel.

Functions

canChannel, configBusSpeed

Properties
BusSpeed, NumberOfSamples, SJW, TSEG1

A

attachDatabase function 6-2

base properties
list for can channel 7-2
bit timing settings
device-specific properties 7-4
Block Library 4-3
blocks
using the Vehicle Network Toolbox block
library 4-1
building
CAN messages 1-15
BusSpeed property 8-2
BusStatus property 8-3

C

CAN
transmit message 1-17
workflow 1-8

can channel
base properties 7-2
CAN Channel
interface-specific properties 7-4
CAN channels
configuring properties 1-13
disconnecting 1-19
SilentMode 1-25
starting 1-14
CAN communication
session 1-8
CAN communications
configuring 1-10
CAN devices
connecting 1-11
CAN messages
building 1-15

filtering 1-21
packing 1-16
receiving 1-18
unpacking 1-19
can.vector.channel, configBusSpeed
function 6-11
can.vector.channel, fileterBlockRange
function 6-20
can.vector.channel, filterAccceptRange
function 6-18
can.vector.channel, filterReset
function 6-22
can.vector.channel, filterSet function 6-23
canChannel function 6-3
canChannel, get function 6-25
canChannel, receive function 6-28
canChannel, receive raw function 6-29
canChannel, replay function 6-31
canChannel, set function 6-33
canChannel, start function 6-36
canChannel, stop function 6-37
canChannel, transmit function 6-38
canDatabase function 6-5
canHWInfo function 6-6
canMessage function 6-7
canSupport function 6-9
canTool function 6-10
cleaning
MATLAB workspace 1-20
configuring
CAN channel properties 1-13 1-25
CAN communications 1-10
message filtering 1-21
connecting
CAN devices 1-11

D

Data property 8-4
Database property 8-5

Index-1

Index

Device property 8-6
device-specific properties

list by object type 7-4
DeviceChannelIndex property 8-7
DeviceSerialNumber property 8-8
DeviceVendor property 8-9
disconnecting

CAN channels 1-19

Error property 8-10
Extended property 8-11
extractAll function 6-13
extractRecent function 6-15
extractTime function 6-17

F

filtering
CAN messages 1-21

functions
attachDatabase 6-2
canChannel 6-3
canChannel, transmit 6-38
canChannelset 6-33
canChannelstart 6-36
canDatabase 6-5
canHWInfo 6-6
canMessage 6-7
canSupport 6-9
canTool 6-10

configBusSpeed, can.vector.channel 6-11

extractAll 6-13
extractRecent 6-15
extractTime 6-17
filterAcceptRange,
can.vector.channel 6-18
filterBlockRange,
can.vector.channel 6-20

Index-2

filterReset, can.vector.channel 6-22

filterSet, can.vector.channel 6-23
get, canChannel 6-25

messageInfo, canChannel 6-26

pack 6-27

receive raw, canChannel 6-29
receive, canChannel 6-28

replay, canChannel 6-31
signalInfo, canDatabase 6-34

stop, canChannel 6-37

unpack 6-40

ID property 8-12
InitializationAccess property 8-13

M

MATLAB workspace

cleaning 1-20
message

transmit 1-17
message filtering

configuring 1-21
messageInfo function 6-26
MessageReceivedFcn property 8-14
MessageReceivedFcnCount property 8-15
messages

packing 1-16

receiving 1-18

unpacking 1-19
Messages property 8-16
MessagesAvailable property 8-17
MessagesReceived property 8-18
MessagesTransmitted property 8-19

Name (Database) property 8-20
Name (Message) property 8-21

Index

NumOfSamples property 8-22

P

pack function 6-27
packing
CAN messages 1-16
properties
BusSpeed 8-2
BusStatus 8-3
Data 8-4
Database 8-5
Device 8-6
DeviceChannellIndex 8-7
DeviceSerialNumber 8-8
DeviceVendor 8-9
Error 8-10
Extended 8-11
ID 8-12
InitializationAccess 8-13
MessageReceivedFcn 8-14
MessageReceivedFcnCount 8-15
Messages 8-16
MessagesAvailable 8-17
MessagesReceived 8-18
MessagesTransmitted 8-19
Name (Database) 8-20
Name (Message) 8-21
NumOfSamples 8-22
ReceiveErrorCount 8-23 to 8-24
Remote 8-25
Running 8-26
SilentMode 8-27
SJW 8-28
synchronization jump width 8-28
Timestamp 8-29
TransceiverName 8-30
TransceiverState 8-31
TransmitErrorCount 8-32
TSEG1 8-33

TSEG2 8-34
property values
base
for can channel 7-2
device-specific 7-4

ReceiveErrorCount property 8-23 to 8-24
receiving
CAN messages 1-18
Remote property 8-25
Running property 8-26

S

signalInfo, signalInfo function 6-34
SilentMode property 8-27
Simulink Library Browser 4-4
SJW property 8-28
starting
CAN channels 1-14
synchronization jump width
properties 8-28

T

Timestamp
properties 8-29
transceiver settings
device-specific properties 7-4
TransceiverName
properties 8-30
TransceiverState
properties 8-31
transmit
CAN message 1-17
TransmitErrorCount
properties 8-32
TSEG1
properties 8-33

Index-3

Index

TSEG2
properties 8-34

V)

unpack function 6-40
unpacking
CAN messages 1-19

Index-4

\"

Vector CAN device
device-specific properties 7-4

Vehicle Network Toolbox block library
using 4-1

Vehicle Network Toolbox Block Library
opening 4-3

	toc
	Getting Started
	Product Overview
	Getting to Know the Vehicle Network Toolbox
	Main Features
	CAN Connectivity
	Vector Device and Driver Support
	Vehicle Network Toolbox Functions
	Simulink Library Support
	CAN Tool Interface

	Interaction Between the Toolbox and Its Components
	Expected Background
	Related Products
	Installation Requirements
	Installing Components
	Installing Hardware Devices and Drivers
	Installing the XL Driver Library
	Installing the Toolbox

	Supported Hardware

	CAN Communication Session
	Workflow Overview
	Typical CAN Workflow

	Configuring CAN Communications
	Prerequisites
	Checking for the Installed CAN Hardware
	Creating a CAN Channel Object
	Configuring Properties
	Starting the Configured Channel
	Creating a Message Object
	Packing a Message
	Transmitting a Message
	Receiving a Message
	Unpacking a Message

	Disconnecting Channels and Cleaning Up
	Disconnecting the Configured Channel
	Cleaning Up the MATLAB Workspace

	Performing Advanced Configurations
	Configuring Message Filtering
	Configuring Multiplexing
	Configuring Silent Mode

	Accessing the Toolbox
	Exploring the Toolbox
	Getting Help
	Viewing Examples

	Using a CAN Database
	Vector CANdb Support
	Loading and Creating Messages Using the .dbc File
	Loading the CAN Database
	Creating a CAN Message
	Adding a Database to a CAN Channel

	Other Uses of the CAN Database
	Viewing Messages Information in the CAN Database
	Viewing Signal Information in a CAN Message
	Attaching a CAN Database to Existing Messages

	Monitoring CAN Message Traffic
	The CAN Tool
	Opening the CAN Tool
	Parts of the CAN Tool
	Configuration
	Messages
	Messages Table

	Using the CAN Tool
	Viewing Messages on a Channel
	Configuring the Channel Bus Speed
	Saving the Message Log File
	Viewing Unique Messages

	Using the Vehicle Network Toolbox Block Library
	Introducing the Vehicle Network Toolbox Block Library
	Opening the Vehicle Network Toolbox Block Library
	Using the canlib Command from the MATLAB Command Window
	Using the Simulink Library Browser

	Building Simulink Models to Transmit and Receive Messages
	Build a Message Transmit Model
	Step 1: Open the Block Library
	Step 2: Create a New Model
	Step 3: Drag the Vehicle Network Toolbox Blocks into the Model
	Step 4: Drag Other Blocks to Complete the Model
	Step 5: Connect the Blocks
	Step 6: Specify the Block Parameter Values

	Build a Message Receive Model
	Step 7: Drag the Vehicle Network Toolbox Blocks into the Model
	Step 8: Drag Other Blocks to Complete the Model
	Step 9: Connect the Blocks
	Step 10: Specify the Block Parameter Values

	Save and Run The Model
	Step 11: Save the Model
	Step 12: Run the Simulation
	Step 13: View the Results

	Function Reference
	CAN Channel Construction
	CAN Channel Configuration
	CAN Channel Execution
	CAN Channel Status
	CAN Database
	CAN Message Handling
	Information and Help
	Graphical Tools
	Vector Informatik

	Functions — Alphabetical List
	Property Reference
	CAN Channel Base Properties
	Channel Status Properties
	CAN Message Properties
	CAN Database Properties
	Receiving Messages
	Error Logging

	Device-Specific Properties
	Vector Device Settings
	Transceiver Settings
	Bit Timing Settings

	Properties — Alphabetical List
	Index

