
Vehicle Network Toolbox™ 1
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Vehicle Network Toolbox™ User’s Guide
© COPYRIGHT 2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2009 Online only New for Version 1.0 (Release 2009a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started

1
Product Overview . 1-2
Getting to Know the Vehicle Network Toolbox 1-2
Main Features . 1-2
Interaction Between the Toolbox and Its Components 1-4
Expected Background . 1-5
Related Products . 1-5
Installation Requirements . 1-6
Supported Hardware . 1-7

CAN Communication Session . 1-8
Workflow Overview . 1-8
Configuring CAN Communications 1-10
Disconnecting Channels and Cleaning Up 1-19
Performing Advanced Configurations 1-21

Accessing the Toolbox . 1-27
Exploring the Toolbox . 1-27
Getting Help . 1-27
Viewing Examples . 1-27

Using a CAN Database

2
Vector CANdb Support . 2-2

Loading and Creating Messages Using the .dbc File . . . 2-3
Loading the CAN Database . 2-3
Creating a CAN Message . 2-3
Adding a Database to a CAN Channel 2-4

iii

Other Uses of the CAN Database . 2-5
Viewing Messages Information in the CAN Database 2-5
Viewing Signal Information in a CAN Message 2-6
Attaching a CAN Database to Existing Messages 2-6

Monitoring CAN Message Traffic

3
The CAN Tool . 3-2
Opening the CAN Tool . 3-2
Parts of the CAN Tool . 3-2

Using the CAN Tool . 3-6
Viewing Messages on a Channel . 3-6
Configuring the Channel Bus Speed 3-6
Saving the Message Log File . 3-7
Viewing Unique Messages . 3-7

Using the Vehicle Network Toolbox Block
Library

4
Introducing the Vehicle Network Toolbox Block
Library . 4-2

Opening the Vehicle Network Toolbox Block
Library . 4-3
Using the canlib Command from the MATLAB Command
Window . 4-3

Using the Simulink Library Browser 4-4

Building Simulink Models to Transmit and Receive
Messages . 4-5
Build a Message Transmit Model . 4-5
Build a Message Receive Model . 4-11
Save and Run The Model . 4-19

iv Contents

Function Reference
5

CAN Channel Construction . 5-2

CAN Channel Configuration . 5-3

CAN Channel Execution . 5-4

CAN Channel Status . 5-5

CAN Database . 5-6

CAN Message Handling . 5-7

Information and Help . 5-8

Graphical Tools . 5-9

Vector Informatik . 5-10

Functions — Alphabetical List

6

Property Reference

7
CAN Channel Base Properties . 7-2
Channel Status Properties . 7-2
CAN Message Properties . 7-2
CAN Database Properties . 7-3
Receiving Messages . 7-3
Error Logging . 7-3

v

Device-Specific Properties . 7-4
Vector Device Settings . 7-4
Transceiver Settings . 7-4
Bit Timing Settings . 7-4

Properties — Alphabetical List

8

Index

vi Contents

1

Getting Started

• “Product Overview” on page 1-2

• “CAN Communication Session” on page 1-8

• “Accessing the Toolbox” on page 1-27

1 Getting Started

Product Overview

In this section...

“Getting to Know the Vehicle Network Toolbox” on page 1-2
“Main Features” on page 1-2
“Interaction Between the Toolbox and Its Components” on page 1-4
“Expected Background ” on page 1-5
“Related Products” on page 1-5
“Installation Requirements” on page 1-6
“Supported Hardware” on page 1-7

Getting to Know the Vehicle Network Toolbox
The Vehicle Network Toolbox™ provides the ability to communicate with
in-vehicle networks using Controller Area Network (CAN) ptotocol. It is a
comprehensive toolbox with a MATLAB® interface, Simulink® modeling
support and a simple utility that allows you to monitor CAN traffic.

You can learn more about the Vehicle Network Toolbox by following a simple
workflow and some easy examples. This chapter introduces the toolbox and
provides some guidelines and examples to use the Vehicle Network Toolbox to
interface with the CAN bus.

Main Features
The Vehicle Network Toolbox product is a collection of M-file functions built
on the MATLAB technical computing environment.

The toolbox provides you with these main features:

• “CAN Connectivity” on page 1-3

• “Vector Device and Driver Support” on page 1-3

• “Vehicle Network Toolbox Functions” on page 1-3

• “Simulink Library Support” on page 1-3

1-2

Product Overview

• “CAN Tool Interface” on page 1-3

CAN Connectivity
The Vehicle Network Toolbox provides host-side CAN connectivity using
defined CAN devices. CAN is the predominant protocol in automotive
electronics by which many distributed control systems in a vehicle function.
For example, in a common design when you press a button to lock the doors
in your car, a control unit in the door reads that input and transmits lock
commands to control units in the other doors. These commands exist as data
in CAN messages, which the control units in the other doors receive and act
on by triggering their individual locks in response.

Vector Device and Driver Support
You can use the Vehicle Network Toolbox with devices supported by Vector.
These devices and drivers provide a link to the CAN bus on which you can
send and receive messages. See “Supported Hardware” on page 1-7 for more
information.

Vehicle Network Toolbox Functions
Using a set of well-defined functions, you can transfer messages between the
MATLAB workspace and a CAN bus using a CAN device. You can run test
applications that can log and record CAN messages for you to process and
analyze. You can also replay recorded sequences of messages.

Simulink Library Support
With the Vehicle Network Toolbox block library and other blocks from the
Simulink library, you can create sophisticated models to connect to a live
network and to simulate message traffic on a CAN bus.

CAN Tool Interface
Using this simple graphical user interface, you can monitor message traffic on
a selected device and channel. You can then analyze these messages.

1-3

1 Getting Started

Interaction Between the Toolbox and Its Components
The Vehicle Network Toolbox is a conduit between MATLAB and the CAN
bus.

In this illustration:

• There are six CAN modules attached to a CAN bus.

• One module which is a CAN device is attached to the Vehicle Network
Toolbox, built on the MATLAB technical computing environment.

Using the Vehicle Network Toolbox from MATLAB, you can configure a
channel on the CAN device to:

1-4

Product Overview

• Transmit messages to the CAN bus.

• Receive messages from the CAN bus.

• Trigger a callback function to run when the channel receives a message.

• Attach the database to the configured CAN channel to interpret received
CAN messages.

• Use the CAN database to construct messages to transmit.

• Log and record messages and analyze them in MATLAB.

• Replay live recorded sequence of messages in MATLAB.

• Build Simulink models to connect to a CAN bus and to simulate message
traffic.

• Monitor message traffic with the CAN Tool.

The Vehicle Network Toolbox is a comprehensive solution for CAN
connectivity in MATLAB and Simulink. Refer to the function and block
chapters for more information.

Expected Background
This document assumes that you are already familiar with the following
products:

• MATLAB — To write scripts and functions with M-code, and to use
functions with the command-line interface.

• Simulink — To create simple models to connect to a CAN bus or to and
simulate those models

• Vector CANdb — To understand CAN databases and message and signal
definitions

Related Products
The MathWorks™ provides several products that are relevant to the kinds
of tasks you can perform with the Vehicle Network Toolbox software and
that extend the capabilities of MATLAB. For information about these related
products, see toolbox product page on the MathWorks Web site.

1-5

http://www.mathworks.com/products/vehicle-network

1 Getting Started

Installation Requirements

• “Installing Components” on page 1-6

• “Installing Hardware Devices and Drivers” on page 1-6

• “Installing the XL Driver Library” on page 1-6

• “Installing the Toolbox” on page 1-7

Installing Components
To communicate on CAN networks from the MATLAB workspace, install
these components:

• Current MATLAB version

• Vehicle Network Toolbox software

• Vector hardware, drivers, and XL driver library

Installing Hardware Devices and Drivers
You need the latest version of the XL Plug & Play drivers for your device to
use with Windows® XP or Windows Vista™.

The documentation from Vector provides installation instructions for
hardware devices such as CANcaseXL, CANboardXL, and CANcardXL,
drivers, and support libraries.

These drivers are available for download from the Vector Web site:

https://www.vector-worldwide.com/va_downloadcenter_us.html

Installing the XL Driver Library
Download and install the latest version of the XL Driver Library from
the Vector Web site. After you install, copy the filevxlapi.dll from the
installation folder to the windows root\system32 directory.

1-6

https://www.vector-worldwide.com/va_downloadcenter_us.html##
https://www.vector-worldwide.com/va_downloadcenter_us.html##

Product Overview

Installing the Toolbox
Determine if Vehicle Network Toolbox software is installed on your system by
typing the following in the MATLAB Command Window:

ver

The Command Window displays information about the MATLAB version you
are running, including a list of installed add-on products and their version
numbers. Check the list to see if the Vehicle Network Toolbox name appears.

For information about installing the toolbox, refer to the installation
documentation for your platform. If you experience installation difficulties,
look for the installation and license information at the MathWorks Web site:

http://www.mathworks.com/support

Supported Hardware
The Vehicle Network Toolbox supports the following Vector devices:

• CANcaseXL

• CANboardXL

• CANboardXL pxi

• CANboardXL PCIe

• CANcardXL

• CANcardX

You can also use the toolbox with virtual CAN channels available with Vector
hardware drivers.

1-7

http://www.mathworks.com/support

1 Getting Started

CAN Communication Session

In this section...

“Workflow Overview” on page 1-8
“Configuring CAN Communications” on page 1-10
“Disconnecting Channels and Cleaning Up” on page 1-19
“Performing Advanced Configurations” on page 1-21

Workflow Overview
This section takes you through the workflow for connecting to a CAN device
and then communicating with the CAN bus.

The subsequent sections map to the following CAN workflow chart.

Subsequent sections also provide interconnected code examples. You can
use these examples and try them sequentially to understand how the
communication works.

1-8

CAN Communication Session

Typical CAN Workflow

1-9

1 Getting Started

Configuring CAN Communications
The following sections provide a sequential workflow for configuring CAN
communications. You can use the provided examples and try them in a
MATLAB Command Window to follow along.

This example creates two CAN channel objects using the canHWInfo function
to obtain information about the devices installed on your system. You edit the
properties of the first channel and create a message using the canMessage
function. You transmit the message from first channel using the transmit
function, and receive it on the other using the receive function.

• “Prerequisites” on page 1-10

• “Checking for the Installed CAN Hardware” on page 1-10

• “Creating a CAN Channel Object” on page 1-11

• “Configuring Properties” on page 1-13

• “Starting the Configured Channel” on page 1-14

• “Creating a Message Object” on page 1-15

• “Packing a Message” on page 1-16

• “Transmitting a Message” on page 1-17

• “Receiving a Message” on page 1-18

• “Unpacking a Message” on page 1-19

Prerequisites
Before you follow this example, make sure you:

• Complete your Toolbox Installation before you try out the examples.

• Connect the two channels in your CAN device in a loopback.

Checking for the Installed CAN Hardware

1 Get information about the CAN hardware devices on your system:

info = canHWInfo

1-10

CAN Communication Session

MATLAB displays the following information:

info =

CAN Devices Detected:
Vector Devices:

CANcaseXL 1 Channel 1
To connect, use - canChannel('Vector', 'CANcaseXL 1', 1)

CANcaseXL 1 Channel 2
To connect, use - canChannel('Vector', 'CANcaseXL 1', 2)

Virtual 1 Channel 1
To connect, use - canChannel('Vector', 'Virtual 1', 1)

Virtual 1 Channel 2
To connect, use - canChannel('Vector', 'Virtual 1', 2)

2 You can get details about all available CAN channels by typing:

info.VendorInfo.ChannelInfo (1)

Press Enter and MATLAB displays information like:

can.vector.ChannelInfo handle
Package: can.vector

Properties:
Device: 'CANcaseXL 1'

DeviceChannelIndex: 1
DeviceSerialNumber: 24811
ObjectConstructor: 'canChannel('Vector', 'CANcaseXL 1', 1)'

Creating a CAN Channel Object

Note This example assumes that you have a loopback connection between
the two channels on your CAN device.

1-11

1 Getting Started

1 Create the first CAN channel on an installed CAN device:

canch = canChannel('Vector','CANcaseXL 1',1)

Notes You cannot use the same variable to create multiple channels
sequentially. Clear any channel in use before using the same variable
to construct a new CAN Channel.

You cannot create arrays of CAN channel objects. Each object you create
must exist as its own individual variable.

2 Press Enter after you create the connection. MATLAB displays a summary
of the channel properties:

Summary of CAN Channel using 'Vector' 'CANcaseXL 1' Channel 1.

Channel Parameters: Bus Speed is 500000.
Bus Status is 'N/A'.
Transceiver name is 'CANpiggy 251mag (Highspeed
Serial Number of this device is 24811.
Initialization access is allowed.
No database is attached.

Status: Offline - Waiting for START.
0 messages available to RECEIVE.
0 messages transmitted since last start.
0 messages received since last start.

Filter History: Filters are open for Standard and Extended IDs.

3 Create a second CAN channel object.

canch1 = canChannel('Vector','CANcaseXL 1',2)

You used the canChannel function to connect to the CAN device. To identify
installed devices, use the canHWInfo function.

1-12

CAN Communication Session

Configuring Properties
You can set the behavior of your CAN channel by configuring its property
values. For this exercise, change the bus speed of channel 1 to 250000 using
the configBusSpeed function.

Tip Configure property values before you start the channel.

1 Display the properties on canch:

get (canch)

MATLAB displays all properties on the configured channel:

General Settings:
BusStatus = 'N/A'
Database = []
InitializationAccess = 1
MessageReceivedFcn = []
MessageReceivedFcnCount = 1
MessagesAvailable = 0
MessagesReceived = 0
MessagesTransmitted = 0
ReceiveErrorCount = 0
Running = 0
SilentMode = 0
TransmitErrorCount = 0

Device Settings:
Device = 'CANcaseXL 1'
DeviceChannelIndex = 1
DeviceSerialNumber = 24811
DeviceVendor = 'Vector'

Transceiver Settings:
TransceiverName = 'CANpiggy 251mag

(Highspeed)'
TransceiverState = 16

1-13

1 Getting Started

Bit Timing Settings:
BusSpeed = 500000
SJW = 1
TSEG1 = 4
TSEG2 = 3
NumOfSamples = 1

2 Change the BusSpeed property of the channel to 250000:

configBusSpeed(canch, 250000)

3 To see the changed property value, type:

get(canch)

MATLAB displays all properties on the configured channel as before, with
the changed BusSpeed property value:

.

.

.
BusSpeed = 250000

4 Change the bus speed of the second channel (canch1) by repeating steps
2 and 3.

Starting the Configured Channel
Start your CAN channels after you configure all properties.

1 Start the first channel:

start(canch)

2 Start the second channel:

start(canch1)

3 To check that the channel is online, type the channel name in the Command
Window. The Status section indicates that the channel is now online, as
in this example:

1-14

CAN Communication Session

canch =
.
.
.

Status: Online.
0 messages available to RECEIVE.
0 messages transmitted since last start.
0 messages received since last start.

Filter History: Filters are open for Standard and Extended IDs.

Creating a Message Object
After set all the property values as desired and your channels are online,
you are ready to transmit and receive messages on the CAN bus. For this
exercise, transmit a message using canch and receive it using canch1. To
transmit a message, create a message object and pack the message with the
required data.

1 Build a CAN message of ID 500 of standard type and a data length of
8 bytes:

messageout = canMessage(500, false, 8)

The message object is now:

can.Message (Normal Frame)

ID: 500 / 1F4 (Hex)
Extended: 0

Data: [0 0 0 0 0 0 0 0]
[00 00 00 00 00 00 00 00] (Hex)

The fields in the message show:

• can.Message (Normal Frame) — Specifies that the message is not an
error or a remote frame.

• ID — The ID you specified and its hexadecimal equivalent.

1-15

1 Getting Started

• Extended— A logical 0 (false) because you did not specify an extended ID.

• Data — A uint8 array of 0s specified by the data length.

Refer to the canMessage function to understand more about the input
arguments.

You can also use a database to create a CAN message. Refer to Using a CAN
Database for more information.

Packing a Message
After you define the message, pack it with the required data.

1 Use the pack function to pack your message with these input parameters:

pack(messageout, 25, 0, 16, 'LittleEndian')

Here you are specifying the data value to be 25, the start bit to be 0, the
signal size to be 16, and the byte order to be little-endian format.

2 To see the packed data, type:

message

MATLAB displays your message properties with the specified data:

can.Message (Normal Frame)

ID: 500 / 1F4 (Hex)
Extended: 0

Data: [25 0 0 0 0 0 0 0]
[19 00 00 00 00 00 00 00] (Hex)

The only field that changes after you specify the data is Data. Refer to the
pack function to understand more about the input arguments.

1-16

CAN Communication Session

Transmitting a Message
After you define the message and pack it with the required data, you are
ready to transmit the message. For this example, use canch to transmit the
message.

1 Use the transmit function to transmit the message, supplying the channel
and the message as input arguments:

transmit(canch, messageout)

2 To display the channel status, type:

canch

MATLAB displays the updated status of the channel:

Summary of CAN Channel using 'Vector' 'CANcaseXL 1' Channel 1.

Channel Parameters: Bus Speed is 250000.
Bus Status is 'ErrorPassive'.
Transceiver name is 'CANpiggy 251mag

(Highspeed)'.
Serial Number of this device is 24811.
Initialization access is allowed.
No database is attached.

Status: Online.
1 messages available to RECEIVE.
1 messages transmitted since last start.
0 messages received since last start.

Filter History: Filters are open for Standard and Extended IDs.

In the Status section, messages transmitted since last start count
increments by 1 each time you transmit a message.

Refer to the transmit function to understand more about the input
arguments.

1-17

1 Getting Started

Receiving a Message
After your channel is online, use the receive function to receive available
messages. For this example, receive the message on the second configured
channel object, canch1.

1 To see messages available to be received on this channel, type:

canch1

The channel status displays available messages:

.

.

.
Status: Online.

1 messages available to RECEIVE.
0 messages transmitted since last start.
0 messages received since last start.

2 To receive one message and store it as messagein on canch1, type:

messagein = receive(canch1, 1)

MATLAB returns the received message properties:

can.Message (Normal Frame)

ID: 500 / 1F4 (Hex)
Extended: 0

Timestamp: 6.999441e+000

Data: [25 0 0 0 0 0 0 0]
[19 00 00 00 00 00 00 00] (Hex)

3 To check if the channel received the message, type:

canch1

MATLAB returns the channel properties, and the status indicates that
the channel received one message:

1-18

CAN Communication Session

.

.

.
Status: Online.

0 messages available to RECEIVE.
0 messages transmitted since last start.
1 messages received since last start.

Refer to the receive function to understand more about its input arguments.

Unpacking a Message
After your channel receives a message, specify how to unpack the message
and interpret the data in the message. Use unpack to specify the parameters
for unpacking a message:

value = unpack(message, 0, 16, 'LittleEndian', 'int16')

The unpacked message returns a value based on your parameters:

value =

25

Refer to the unpack function to understand more about its input arguments.

Disconnecting Channels and Cleaning Up

• “Disconnecting the Configured Channel” on page 1-19

• “Cleaning Up the MATLAB Workspace” on page 1-20

Disconnecting the Configured Channel
When you no longer need to communicate with your CAN bus, disconnect the
CAN channel that you configured. Use the stop function to disconnect.

1 Stop the first channel:

stop(canch)

1-19

1 Getting Started

2 Check the channel status:

canch

MATLAB displays the channel status:

.

.

.
Status: Offline - Waiting for START.

1 messages available to RECEIVE.
1 messages transmitted since last start.
0 messages received since last start.

3 Stop the second channel:

stop (canch1)

4 Check the channel status:

canch1

MATLAB displays the channel status:

Status: Offline - Waiting for START.
0 messages available to RECEIVE.
0 messages transmitted since last start.
1 messages received since last start.

Cleaning Up the MATLAB Workspace
When you no longer need the objects you used, remove them from the
MATLAB workspace. To remove channel objects and other variables from the
MATLAB workspace, use the clear function.

1 Clear the first channel:

clear canch

2 Clear the second channel:

clear canch1

1-20

CAN Communication Session

3 Clear the CAN messages:

clear('messageout', 'messagein')

4 Clear the unpacked value:

clear value

Performing Advanced Configurations

• “Configuring Message Filtering” on page 1-21

• “Configuring Multiplexing” on page 1-22

• “Configuring Silent Mode” on page 1-25

Configuring Message Filtering
You can set up filters on your channel to accept messages based on the filtering
parameters you specify. Set up your filters before putting your channel online.
For more information on message filtering, see these functions:

• filterAcceptRange

• filterBlockRange

• filterReset

• filterSet

To specify a range of message IDs that you want the channel to accept, type:

stop (canch)
filterAcceptRange (canch, 500, 625)
start (canch)

Now you can build a message, and then pack, transmit, receive, and unpack
it. If you display your channel settings, you see the status of the message
filters on it.

canch

canch =

1-21

1 Getting Started

Summary of CAN Channel Object using
'Vector' 'CANcaseXL 1' Channel 1.

.

.

.
Filter History:Filters are open for Standard and Extended IDs.

Block Range added. Starting ID:0 Ending ID:2047
Accept Range added. Starting ID:500 Ending ID:625

Configuring Multiplexing
Use multiplexing to combine multiple signals into one signal and transmit it
on the CAN bus. A multiplexed message can have three types of signals:

Standard signal
This signal is always active. You can create one or more standard
signals.

Multiplexor signal
Also called the mode signal, it is always active and its value determines
if a multiplexed signal is packed. You can create only one multiplexor
signal per message.

Multiplexed signal
This signal is active when its multiplex value matches the value of a
multiplexor signal. You can create one or more multiplexed signals in
a message.

When you multiplex a message, you can specify both standard and
multiplexed signals. While standard signals are always packed into the
message, a multiplexed signal is either packed or ignored, depending on
whether its multiplex value matches the value of a multiplexor signal.

To create a multiplex message use a CAN database with message definitions
that already contain multiplex signal information. This example shows you
how to specify the different multiplex signals using a database constructed
specifically for this purpose. This database has one message with these
signals:

1-22

CAN Communication Session

1 SigA: A multiplexed signal with a multiplex value of 0.

2 SigB: Another multiplexed signal with a multiplex value of 1.

3 MuxSig: A multiplexor signal, whose incoming value determines which of
the two multiplexed signals are active (are packed) in the message.

To try this example, create messages and signals using definitions in your
own database.

1 Create a CAN database:

d = canDatabase('Mux.dbc')

Note This is an example database constructed for creating multiplex
messages. To try this example, use your own database.

2 Create a CAN message:

m = canMessage(d, 'Msg')

The message displays all its properties including multiplex signals:

can.Message (Normal Frame)

ID: 250 / FA (Hex)
Extended: 0

Name: 'Msg'

Data: [0 0 0 0 0 0 0 0]
[00 00 00 00 00 00 00 00] (Hex)

MuxSig: 0 (Muxor)
SigA: 0 (Active)
SigB: N/A

SigA is active (or packed into the message) because its multiplex current
value of 0 matches the value of MuxSig (which is 0).

3 Change the value of the MuxSig to 1:

1-23

1 Getting Started

m.MuxSig = 1

The message displays its properties with changed signal states:

can.Message (Normal Frame)

ID: 250 / FA (Hex)
Extended: 0

Name: 'Msg'

Data: [1 0 0 0 0 0 0 0]
[01 00 00 00 00 00 00 00] (Hex)

MuxSig: 1 (Muxor)
SigA: N/A
SigB: 0 (Active)

SigB is active because its multiplex value of 1 matches the current value of
MuxSig (which is 1).

4 Change the value of MuxSig to 2:

m.MuxSig = 2

the message displays its properties with changed signal states:

can.Message (Normal Frame)

ID: 250 / FA (Hex)
Extended: 0

Name: 'Msg'

Data: [2 0 0 0 0 0 0 0]
[02 00 00 00 00 00 00 00] (Hex)

MuxSig: 2 (Muxor)
SigA: N/A
SigB: N/A

Neither of the signals are active because the current value of MuxSig does
not match the multiplex value of either SigA or SigB.

1-24

CAN Communication Session

Refer to the canMessage function to learn more about creating messages.

Configuring Silent Mode
The SilentMode property of a CAN channel specifies that the channel can
only receive messages and not transmit them. Use this property to observe all
message activity on the network and perform analysis without affecting the
network state or behavior. See SilentMode for more information.

1 Create a CAN channel object canch and display its properties:

get(canch)

MATLAB displays all properties on the configured channel:

General Settings:
BusStatus = 'N/A'
Database = []
InitializationAccess = 1
MessageReceivedFcn = []
MessageReceivedFcnCount = 1
MessagesAvailable = 0
MessagesReceived = 0
MessagesTransmitted = 0
ReceiveErrorCount = 0
Running = 0
SilentMode = 0
TransmitErrorCount = 0

Device Settings:
Device = 'CANcaseXL 1'
DeviceChannelIndex = 1
DeviceSerialNumber = 24811
DeviceVendor = 'Vector'

Transceiver Settings:
TransceiverName = 'CANpiggy 251mag (Highspeed)'
TransceiverState = 16

Bit Timing Settings:
BusSpeed = 500000

1-25

1 Getting Started

SJW = 1
TSEG1 = 4
TSEG2 = 3
NumOfSamples = 1

2 Change the SilentMode property of the channel to true:

canch.SilentMode = true

3 To see the changed property value, type:

get(canch)

MATLAB displays all properties on the configured channel as before, with
the changed SilentMode property value:

SilentMode = 1

1-26

Accessing the Toolbox

Accessing the Toolbox

In this section...

“Exploring the Toolbox” on page 1-27
“Getting Help” on page 1-27
“Viewing Examples” on page 1-27

Exploring the Toolbox
You can access the Vehicle Network Toolbox from the MATLAB command
window directly by using any Vehicle Network Toolbox function. To see a list
of all the functions available, type:

help vnt

Getting Help
The toolbox functions are grouped by usage. Click a specific function for more
information.

To access the online documentation for the Vehicle Network Toolbox, type:

doc vnt

To access the reference page for a specific function, type:

doc function_name

Viewing Examples
Examples in this guide use the Vector CANCaseXL device, with the XL
Hardware Driver Version 6.3. The Examples index in the Help browser lists
these examples.

1-27

1 Getting Started

1-28

2

Using a CAN Database

• “Vector CANdb Support” on page 2-2

• “Loading and Creating Messages Using the .dbc File” on page 2-3

• “Other Uses of the CAN Database” on page 2-5

2 Using a CAN Database

Vector CANdb Support
The Vehicle Network Toolbox supports the use of a Vector CAN database. A
.dbc file contains definitions of CAN messages and signals.

Use the Vehicle Network Toolbox toolbox to look up message and signal
information and build messages using the information defined in the database
file.

2-2

Loading and Creating Messages Using the .dbc File

Loading and Creating Messages Using the .dbc File

In this section...

“Loading the CAN Database” on page 2-3
“Creating a CAN Message” on page 2-3
“Adding a Database to a CAN Channel” on page 2-4

Loading the CAN Database
To use a CANdb file, load the database into your MATLAB session. At the
MATLAB command prompt, type:

db = canDatabase(’filename.dbc’)

Here db is a variable you chose for your database handle and filename.dbc is
the actual file name of your CAN database. If your CAN database in not in
the current working directory, type the path to the database:

db = canDatabase(’path\filename.dbc’)

This command returns a database object you can use to create and interpret
CAN messages using information stored in the database. Refer to the
canDatabase function for more information.

Creating a CAN Message
This example shows you how to create a message using a database constructed
specifically for this purpose. This database has one message, Msg. To try this
example, create messages and signals using definitions in your own database.

1 Create the CAN database object:

d = canDatabase('Mux.dbc')

2 Create a CAN message using the message name in the database:

message = canMessage(d, 'Msg')

3 Create a CAN message using the message ID in the database:

2-3

2 Using a CAN Database

message1 = canMessage(d, 250, false)

Adding a Database to a CAN Channel
To add a database to a CAN channel, type:

canch.Database = 'Mux.dbc'

For more information, see the Database property.

2-4

Other Uses of the CAN Database

Other Uses of the CAN Database

In this section...

“Viewing Messages Information in the CAN Database” on page 2-5
“Viewing Signal Information in a CAN Message” on page 2-6
“Attaching a CAN Database to Existing Messages” on page 2-6

Viewing Messages Information in the CAN Database
You can get information about the definition of messages in the database,
a single message by name, or a single message by ID. To get message
information about all messages in the database, type:

msgInfo = messageInfo(database name)

This command returns the message structure of information about messages
in the database. For example:

msgInfo =

5x1 struct array with fields:
Name
Comment
ID
Extended
Length
Signals

To get information about a single message by message name, type:

msgInfo = messageInfo(database name, 'message name')

This command returns information about the message as defined in the
database. For example:

msgInfo = messageInfo(db, 'EngineMsg')

msgInfo =

2-5

2 Using a CAN Database

Name: 'EngineMsg'
Comment: ''

ID: 100
Extended: 0

Length: 8
Signals: {2x1 cell}

Here the function returns information about message with name EngineMsg
in the database db. You can also use the message ID to get information a
message. For example, to view the example message given here by inputting
the message ID, type:

msgInfo = messageInfo(db, 100, false)

This command provides the database name, the message ID, and a Boolean
value for the extended value of the ID.

To learn how to use it and work with the database, see messageInfo function.

Viewing Signal Information in a CAN Message
You can get information about all signals in a CAN message. Provide the
message name or the ID as a parameter in the command:

sigInfo = signalInfo(db, 'EngineMsg')

You can also get information about a specific signal by providing the signal
name:

sigInfo = signalInfo(db, 'EngineMsg', 'EngineRPM')

To learn how to use this property and work with the database, see the
signalInfo function.

Attaching a CAN Database to Existing Messages
You can attach a .dbc file to messages and apply the message definition
defined in the database. Attaching a database allows you to view the messages
in their physical form and use a signal-based interaction with the message
data. To attach a database to a message, type:

2-6

Other Uses of the CAN Database

attachDatabase(message name, database name)

Note If your message is an array, all messages in the array are associated
with the database that you attach.

You can also dissociate a message from a database so that you can view the
message in its raw form. To clear the attached database from a message, type:

attachDatabase(message name, [])

Note The database gets attached even if the database does not find the
specified message. Even though the database is still attached to the message,
the message is displayed in its raw mode.

For more information, see the attachDatabase function.

2-7

2 Using a CAN Database

2-8

3

Monitoring CAN Message
Traffic

• “The CAN Tool” on page 3-2

• “Using the CAN Tool” on page 3-6

3 Monitoring CAN Message Traffic

The CAN Tool

In this section...

“Opening the CAN Tool” on page 3-2
“Parts of the CAN Tool” on page 3-2

Opening the CAN Tool
The Vehicle Network Toolbox provides a graphical user interface that displays
CAN message traffic on selected CAN channels.

To open the CAN Tool type canTool at the MATLAB command line.

Parts of the CAN Tool
The CAN Tool is a simple interface that displays all messages received by a
specific CAN channel. The tool has the following fields:

3-2

The CAN Tool

Configuration

Channel
Displays all available CAN devices and channels on your system.

Bus Speed
Displays the bus speed of the selected CAN channel. You can also
change the bus speed of a channel. See Configuring the Channel Bus
Speed.

3-3

3 Monitoring CAN Message Traffic

Messages

Start
Click this button to view message activity on the selected channel.

Pause
Click this button to pause the display of message activity on the selected
channel.

Stop
Click this button to stop displaying messages on the selected channel.

Export Messages
Click this button to export the current message list on the selected
channel up to the latest message.

Show only unique messages
Select this check box to show the most recent instance of each message
received on the selected channel. If you select this check box, the tool
displays a simplified version of the message traffic. In this view, you
will not see messages scroll up, but each message refreshes its data
with each timestamp. If you do not select this option the tool displays
all instances of all messages in the order that the selected channel
receives them.

Messages Table

Timestamp
Displays the time, relative to the start time, that the device receives the
message. The start time when you click Start in the tool starts at 0.

ID
Displays the message ID. This field displays a number in hexadecimal
format for the ID and:

• Displays numbers only for standard IDs.

• Appends with an x for an extended ID.

• Displays an r for a remote frame.

• Displays error for messages with error frames.

3-4

The CAN Tool

Length
Displays the length of the message in bytes.

Data
Displays the data in the message in hexadecimal format.

3-5

3 Monitoring CAN Message Traffic

Using the CAN Tool

In this section...

“Viewing Messages on a Channel” on page 3-6
“Configuring the Channel Bus Speed” on page 3-6
“Saving the Message Log File” on page 3-7
“Viewing Unique Messages” on page 3-7

Viewing Messages on a Channel
To view messages on a channel:

1 Open the CAN Tool and select the device and channel connected to your
CAN bus from the Channel list.

2 The CAN Tool defaults to the bus speed set in the device driver. You can
also configure a new bus speed. See Configuring the Channel Bus Speed

3 Click Start.

Click Pause to pause the display.

Click Stop to stop the display.

Configuring the Channel Bus Speed
Configure the bus speed when the speed of your network differs from the
default value of the channel. You require initialization is access for the
channel to configure the bus speed, otherwise the option is disabled. If you
enter an invalid value, it will return to the last valid value.

To configure a new bus speed:

1 Type the desired value in the Bus Speed field.

2 Press Enter.

3-6

Using the CAN Tool

Saving the Message Log File
To save a log file of the messages currently displayed in the window click
Export Messages. The tool saves the messages in a MATLAB file in your
current working directory.

Each time you export the messages to a file, CAN Tool saves them as VNT
CAN Log.mat with sequential numbering.

Viewing Unique Messages
To view the most recent instance of each unique message received on the
channel, click Show only unique messages. In this view, you will not see
messages scroll up, but each message refreshes its data and timestamp with
each new instance.

3-7

3 Monitoring CAN Message Traffic

Use this feature to get a snapshot of the IDs of messages that selected channel
receives. Use this information to analyze the specific messages.

When the Show only unique messages check box is selected, the tool
continues to receive message actively. This simplified view allows you to focus
in on a specific messages and analyze them.

To export messages when the Show only unique messages check box is
selected, click Pause and then click Export messages. You cannot save the
unique message list, but this operation saves the complete message log in
the window.

3-8

4

Using the Vehicle Network
Toolbox Block Library

• “Introducing the Vehicle Network Toolbox Block Library” on page 4-2

• “Opening the Vehicle Network Toolbox Block Library” on page 4-3

• “Building Simulink Models to Transmit and Receive Messages” on page 4-5

4 Using the Vehicle Network Toolbox™ Block Library

Introducing the Vehicle Network Toolbox Block Library
This chapter describes how to use the Vehicle Network Toolbox block library.
The block library consists of these blocks:

• CAN Configuration— Configure the settings of a CAN device.

• CAN Pack — Pack signals into a CAN message.

• CAN Receive — Receive CAN messages from a CAN Bus.

• CAN Transmit— Transmit CAN messages to a CAN Bus.

• CAN Unpack — Unpack signals from a CAN message.

The Vehicle Network Toolbox block library is a tool for simulating message
traffic on a CAN network, as well for using the CAN bus to send and receive
messages. You can use blocks from the block library with blocks from other
Simulink libraries to create sophisticated models.

To use the Vehicle Network Toolbox block library you require Simulink,
a tool for simulating dynamic systems. Simulink is a model definition
environment. Use Simulink blocks to create a block diagram that represents
the computations of your system or application. Simulink is also a model
simulation environment. Run the block diagram to see how your system
behaves. If you are new to Simulink, read the Simulink Getting Started Guide
in the Simulink documentation to understand its functionality better.

For more detailed information about the blocks in the Vehicle Network
Toolbox block library, see Blocks Reference.

4-2

Opening the Vehicle Network Toolbox Block Library

Opening the Vehicle Network Toolbox Block Library

In this section...

“Using the canlib Command from the MATLAB Command Window” on
page 4-3
“Using the Simulink Library Browser” on page 4-4

Using the canlib Command from the MATLAB
Command Window
To open the Vehicle Network block library, enter

canlib

at the MATLAB Command Window. MATLAB displays the contents of the
library in a separate window.

4-3

4 Using the Vehicle Network Toolbox™ Block Library

Using the Simulink Library Browser
To open the Vehicle Network Toolbox block library, start the Simulink Library
Browser from MATLAB. Then select the library from the list of available
block libraries displayed in the browser.

To start the Simulink Library Browser, enter

simulink

at the MATLAB Command Window. MATLAB opens the browser window.
The left pane lists available block libraries, with the basic Simulink library
listed first, followed by other libraries listed in alphabetical order under it. To
open the Vehicle Network Toolbox block library, click its icon and select CAN
Communication for the CAN blocks.

Simulink loads and displays the blocks in the library.

4-4

Building Simulink® Models to Transmit and Receive Messages

Building Simulink Models to Transmit and Receive
Messages

In this section...

“Build a Message Transmit Model” on page 4-5
“Build a Message Receive Model” on page 4-11
“Save and Run The Model” on page 4-19

Build a Message Transmit Model
This section provides an example that builds a simple model using the Vehicle
Network Toolbox blocks with other blocks in the Simulink library. The
example illustrates how to send data via a CAN network.

• Use virtual CAN channels to transmit messages.

• Use the CAN Configuration block to configure your CAN channels.

• Use the Constant block to send data to the CAN Pack block.

• Use a CAN Transmit block to send the data to the virtual CAN channel.

Use this section in combination with the “Build a Message Receive Model”
on page 4-11, and the “Save and Run The Model” on page 4-19 to build your
complete model and run the simulation.

• “Step 1: Open the Block Library” on page 4-6

• “Step 2: Create a New Model” on page 4-6

• “Step 3: Drag the Vehicle Network Toolbox Blocks into the Model” on
page 4-7

• “Step 4: Drag Other Blocks to Complete the Model” on page 4-8

• “Step 5: Connect the Blocks” on page 4-9

• “Step 6: Specify the Block Parameter Values” on page 4-9

4-5

4 Using the Vehicle Network Toolbox™ Block Library

Step 1: Open the Block Library
To open the Vehicle Network Toolbox block library, start the Simulink Library
Browser. Now choose Vehicle Network Toolbox from the list of available
libraries displayed in the browser.

To start the Simulink Library Browser, enter

simulink

at the MATLAB Command Window. The left pane in the Simulink Library
Browser lists the available block libraries. To open the Vehicle Network
Toolbox block library, click its entry icon. Then, click CAN Communication
to open the CAN blocks. See Using the Simulink Library Browser for more
information.

Step 2: Create a New Model
To use a block, add it to an existing model or create a model.

For this example, create a model by clicking the New model button on the
toolbar.

4-6

Building Simulink® Models to Transmit and Receive Messages

You can also select the File menu in the Simulink Library Browser and select
New > Model. Simulink opens an empty model window on the display. To
name the new model, use the Save option.

Step 3: Drag the Vehicle Network Toolbox Blocks into the
Model
To use the blocks in a model, click a block in the library and, holding the
mouse button down, drag it into the model window. For this example, you
need one instance each of the CAN Configuration, CAN Pack, and the CAN
Transmit block in your model.

4-7

4 Using the Vehicle Network Toolbox™ Block Library

Drag Vehicle Network Toolbox™ Blocks into Model Window

Step 4: Drag Other Blocks to Complete the Model
This example requires a source block that feeds data to the CAN Pack block.
Add a Constant block into your model.

Drag Constant Block to the Model Window

4-8

Building Simulink® Models to Transmit and Receive Messages

Step 5: Connect the Blocks
Make a connection between the Constant block and the CAN Pack block.
When you move the pointer near the output port of the Constant block, the
pointer becomes a cross hair. Click the Constant block output port and,
holding the mouse button, drag the pointer to the input port of the CAN Pack
block. Then release the button.

In the same way, make a connection between the output port of the CAN Pack
block and the input port of the CAN Transmit block.

The CAN Configuration block does not connect to any other block. This block
configures the CAN channel used by the CAN Transmit block to transmit
the packed message.

Step 6: Specify the Block Parameter Values
You set parameters for the blocks in your model by double-clicking on the
block.

Configure the CAN Configuration Block. Double-click the CAN
Configuration block to open its parameters dialog box. Set the:

• Device to Vector Virtual 1 (Channel 1).

• Bus speed to 500000.

• Acknowledge Mode to Normal.

Click Apply, then OK.

Configure the CAN Pack Block. Double-click the CAN Pack block to open
its parameters dialog box. Set the:

• Data is input as to raw data.

• Name to the default value CAN Msg.

• Identifier type to the default Standard (11-bit identifier) type.

• Identifier to 500.

4-9

4 Using the Vehicle Network Toolbox™ Block Library

• Length (bytes) to the default length of 8.

Click Apply, then OK.

Configure the CAN Transmit Block. Double-click the CAN Transmit to
open its parameters dialog box. Set Device to Vector Virtual 1 (Channel
1). Click Apply, then OK.

Configure the Constant Block. Double-click the Constant block to open its
parameters dialog box. On the Main tab, set the:

• Constant value to [1 2 3 4 5 6 7 8].

• Sample time to 0.01 seconds.

On the Signal Attributes tab, set the Output data type to uint8.

Your model looks like this figure:

4-10

Building Simulink® Models to Transmit and Receive Messages

Build a Message Receive Model
This section provides an example that builds a simple model using the Vehicle
Network Toolbox blocks with other blocks in the Simulink library. The
example illustrates how to receive data via a CAN network.

• Use a virtual CAN channel to receive messages.

• You use the CAN Configuration block to configure your virtual CAN
channels.

4-11

4 Using the Vehicle Network Toolbox™ Block Library

• Use the CAN Receive block to receive the message sent by the blocks built
in “Build a Message Transmit Model” on page 4-5.

• Use a Function–Call Subsystem block that contains the CAN Unpack block.
This function takes in the data from the CAN Receive block and uses the
parameters of the CAN Unpack to unpack your message data.

• Use a Scope block to show the transfer of data visually.

Use this section in combination with the “Build a Message Transmit Model”
on page 4-5, and the “Save and Run The Model” on page 4-19 to build your
complete model and run the simulation.

• “Step 7: Drag the Vehicle Network Toolbox Blocks into the Model” on page
4-12

• “Step 8: Drag Other Blocks to Complete the Model” on page 4-13

• “Step 9: Connect the Blocks” on page 4-16

• “Step 10: Specify the Block Parameter Values” on page 4-17

Step 7: Drag the Vehicle Network Toolbox Blocks into the
Model
For this example, you need one instance each of the CAN Configuration, the
CAN Receive, and the CAN Unpack block in your model. However, you add
only the CAN Configuration and the CAN Receive blocks here. Add the CAN
Unpack block into the Function–Call Subsystem described in “Step 8: Drag
Other Blocks to Complete the Model” on page 4-13.

Note Configure a separate CAN channel for the CAN Receive and CAN
Unpack blocks.

4-12

Building Simulink® Models to Transmit and Receive Messages

Drag Vehicle Network Toolbox™ Blocks into Model Window

Step 8: Drag Other Blocks to Complete the Model
Use the Function–Call Subsystem block from the Simulink Ports &
Subsystems block library to build your CAN Message pack subsystem.

1 Drag the Function–Call Subsystem block into the model.

4-13

4 Using the Vehicle Network Toolbox™ Block Library

2 Double-click the Function–Call Subsystem block to open the subsystem
model.

3 Drop the CAN Unpack block from the Vehicle Network Toolbox block
library in this subsystem.

4-14

Building Simulink® Models to Transmit and Receive Messages

To see the results of the simulation visually, drag the Scope block from the
Simulink block library into your model.

Drag The Scope Block into Model Window

4-15

4 Using the Vehicle Network Toolbox™ Block Library

Step 9: Connect the Blocks

1 Connect the CAN Msg output port on the CAN Receive block to the In1
input port on the Function–Call Subsystem block.

2 Rename In1 to CAN Msg

3 Connect the f() output port on the CAN Receive block to the function()
input port on the Function–Call Subsystem block.

4 Rename the Function–Call Subsystem to CAN Unpack Subsystem.

5 Connect the CAN Unpack Subsystem output port to the input port on the
Scope block.

Your model looks like this figure:

4-16

Building Simulink® Models to Transmit and Receive Messages

The CAN Configuration block does not connect to any other block. This block
configures the CAN channel used by the CAN Receive block to receive the
CAN message.

Step 10: Specify the Block Parameter Values
You set parameters for the blocks in your model by double-clicking on the
block.

Configure the CAN Configuration Block. Double-click the CAN
Configuration block to open its parameters dialog box. Set the:

4-17

4 Using the Vehicle Network Toolbox™ Block Library

1 Device to Vector Virtual 1 (Channel 2).

2 Bus speed to 500000.

3 Acknowledge Mode to Normal.

Click Apply, then OK.

Configure the CAN Receive Block. Double-click the CAN Receive block to
open its Parameters dialog box. Set the :

1 Device to Vector Virtual 1 (Channel 2).

2 Sample time to 0.01.

3 Number of messages received at each timestep to All.

Click Apply, then OK.

Configure the CAN Unpack Subsystem. Double-click the CAN Unpack
subsystem to open the Function–Call Subsystem model. In the model, double
click the CAN Unpack block to open its parameters dialog box. Set the:

1 Data is input as to raw data.

2 Name to the default value CAN Msg.

3 Identifier type to the default Standard (11-bit identifier) type.

4 Identifier to 500.

5 Length (bytes) to the default length of 8.

Click Apply, then OK.

Your subsystem looks like this figure:

4-18

Building Simulink® Models to Transmit and Receive Messages

Save and Run The Model
This section shows you how to save the models you have built in the previous
two sections, “Build a Message Transmit Model” on page 4-5 and “Build a
Message Receive Model” on page 4-11.

• “Step 11: Save the Model” on page 4-19

• “Step 12: Run the Simulation” on page 4-20

• “Step 13: View the Results” on page 4-21

Step 11: Save the Model
Before you run the simulation, save your model by clicking the Save icon or
selecting File > Save from the menu.

4-19

4 Using the Vehicle Network Toolbox™ Block Library

Step 12: Run the Simulation
To run the simulation, click the Start button on the model window toolbar.
Alternatively, you can use the Simulation menu in the model window and
choose the Start option.

When you run the simulation, the CAN Transmit block gets the message from
the CAN Pack block. It then transmits it via Virtual channel 1. The CAN
Receive block on Virtual Channel 2 receives this message and hands it to the
CAN Unpack block to unpack the message.

While the simulation is running, the status bar at the bottom of the model
window updates the progress of the simulation.

4-20

Building Simulink® Models to Transmit and Receive Messages

Step 13: View the Results
Double-click the Scope block to view the message transfer on a graph.

4-21

4 Using the Vehicle Network Toolbox™ Block Library

4-22

5

Function Reference

CAN Channel Construction (p. 5-2) Functions related to constructing a
CAN channel

CAN Channel Configuration (p. 5-3) Functions related to configuring a
CAN channel

CAN Channel Execution (p. 5-4) Functions related to executing
function on a configured CAN
channel.

CAN Channel Status (p. 5-5) Functions related to checking the
CAN channel status

CAN Database (p. 5-6) Functions related to the CAN
dtabase

CAN Message Handling (p. 5-7) Functions related to working with
CAN messages

Information and Help (p. 5-8) Functions related to displaying help
information

Graphical Tools (p. 5-9) Functions related to CAN Tools
Vector Informatik (p. 5-10) Functions specifically related to

Vector hardware functionality

5 Function Reference

CAN Channel Construction
canChannel Construct CAN channel connected

to selected device

5-2

CAN Channel Configuration

CAN Channel Configuration
get Return property values
set Configure property values

5-3

5 Function Reference

CAN Channel Execution
receive Receive messages from CAN bus
receiveRaw Receive raw messages from CAN bus
replay Retransmit messages from CAN bus
start Set CAN channel online
stop Set CAN channel offline
transmit Send CAN messages to CAN bus

5-4

CAN Channel Status

CAN Channel Status

5-5

5 Function Reference

CAN Database
canDatabase Create handle to CAN database file
messageInfo Information about CAN messages
signalInfo Information about signals in CAN

message

5-6

CAN Message Handling

CAN Message Handling
attachDatabase Attach CAN database to messages

and remove CAN database from
messages

canMessage Build CAN message based on
user-specified structure

extractAll Select all instances of message from
array of messages

extractRecent Select most recent message from
array of messages

extractTime Select messages occurring within
specified time range from array of
messages

pack Pack signal data into CAN message
unpack Unpacks signal data from message

5-7

5 Function Reference

Information and Help
canHWInfo Information on available CAN

devices
canSupport Generate technical support log

5-8

Graphical Tools

Graphical Tools
canTool Open CAN Tool

5-9

5 Function Reference

Vector Informatik
These functions are specific to the Vector Informatik CAN device.

configBusSpeed Set bit timing rate of CAN channel
filterAcceptRange Set range of CAN identifiers to pass

acceptance filter
filterBlockRange Set range of CAN identifiers to block

via acceptance filter
filterReset Open CAN message acceptance

filters
filterSet Set specific CAN message acceptance

filter configuration

5-10

6

Functions — Alphabetical
List

attachDatabase

Purpose Attach CAN database to messages and remove CAN database from
messages

Syntax attachDatabase (message, database)
attachDatabase (message, [])

Arguments message The name of the CAN message that you
want to attach the database to or remove
the database from.

database The name of the database (.dbc file) that
you want to attach to the message or
remove from the message.

Description attachDatabase (message, database) attaches the specified
database to the specified message. You can then use signal-based
interaction with the message data, interpreting the message in its
physical form.

attachDatabase (message, []) removes any attached database from
the specified message. You can then interpret messages in their raw
form.

Remarks If the specified message is an array, then the database attaches itself
to each entry in the array. The database attaches itself to the message
even if the message you specified does not exist in the database. The
message then appears and operates like a raw message. To attach the
database to the CAN channel directly, edit the Database property of
the channel object.

Examples candb = canDatabase('C:\Database.dbc')
msg = receive(canch, Inf)
attachDatabase(messsage, candb)

See Also canDatabase, receive

6-2

canChannel

Purpose Construct CAN channel connected to selected device

Syntax canch = canChannel('vendor', 'device', devicechannelindex)

Arguments vendor The name of the CAN device vendor. Specify
the vendor name as a string.

device The CAN interface that you want to connect
to.

devicechannelindex A numeric channel on the specified device.
canch The CAN channel object the you create.

Description canch = canChannel('vendor', 'device', devicechannelindex)
returns a CAN channel connected to a device from a specified vendor.

For Vector products, device is a combination of the device type and a
device index, such as 'CANCaseXL 1'. For example, if there are two
CANcardXL devices, device can be 'CANcardXL 1' or 'CANcardXL 2'.

Use canHWInfo to obtain a list of available devices.

Remarks The Vehicle Network Toolbox currently supports Vector devices.

• CANboardXL_PCIe

• CANboardXL_PXI

• CANcardX

• CANcardXL

• CANcaseXL

• Virtual

6-3

canChannel

Examples canch = canChannel('Vector','CANCaseXL 1',1)
canch = canChannel('Vector','Virtual 1',2)

Notes You cannot use the same variable to create multiple channels
sequentially. Clear any channel in use before using the same variable
to construct a new CAN Channel.

You cannot create arrays of CAN channel objects. Each object you
create must exist as its own individual variable.

See Also canHWInfo

6-4

canDatabase

Purpose Create handle to CAN database file

Syntax candb = canDatabase('dbfile.dbc')

Description candb = canDatabase('dbfile.dbc') creates a handle to the specified
database file dbfile.dbc. You can specify just a file name, a full path,
or a relative path. MATLAB looks for dbfile.dbc on the MATLAB
path. Vehicle Network Toolbox supports the Vector CAN database
(.dbc) files.

Examples candb = canDatabase('C:\Database.dbc')

See Also canMessage

6-5

canHWInfo

Purpose Information on available CAN devices

Syntax out = canHWInfo()

Description out = canHWInfo() returns information about CAN devices and
displays the information on a per vendor and channel basis. Use get on
the output of canHWInfo to obtain more detailed results.

Examples info = canHWInfo()
get(info)

ToolboxName: 'Vehicle Network Toolbox'
ToolboxVersion: '1.0 (R2009a)'
MATLABVersion: '7.8 (R2009a)'

VendorInfo: [1x1 can.vector.VendorInfo]

See Also canChannel

6-6

canMessage

Purpose Build CAN message based on user-specified structure

Syntax message = canMessage(id, extended, datalength)
message = canMessage(database, messagename)
message = canMessage(database, id, extended)

Arguments id The ID of the message that you specify.
extended Indicates whether the message ID is of standard or

extended type. The Boolean value is true if extended
or false if standard.

datalength The length of the data of the message, in bytes.
Specify from 0 through 8.

database handle to the CAN database containing the message
definition.

messagename The name of the message definition in the database.
message The message object returned from the function.

Description message = canMessage(id, extended, datalength) creates and
returns a CAN message object, from the raw message information.

message = canMessage(database, messagename) constructs a
message using the message definition of the specified message, in the
specified database.

message = canMessage(database, id, extended) constructs a
message using the message definition of the specified ID and type, in
the specified database.

Examples message = canMessage(2500, true, 4)

To construct a message using CAN database message definitions, create
a database object using the canDatabase function and then construct
your message.

6-7

canMessage

candb = ('c:\database.dbc')
message = canMessage (candb, 'messagename')
message = canMessage (candb, 800, false)

See Also attachDatabase, canDatabase, extractAll, extractRecent,
extractTime, pack, unpack

6-8

canSupport

Purpose Generate technical support log

Syntax canSupport()

Description canSupport() returns diagnostic information for all installed CAN
devices and saves output to the text file cansupport.txt in the current
working directory.

For online support of Vehicle Network Toolbox software, visit the
toolbox page on the MathWorks Web site.

6-9

http://www.mathworks.com/products/vehicle-network/

canTool

Purpose Open CAN Tool

Syntax canTool

Description canTool starts the CAN Tool, which displays live CAN message traffic.
Use the CAN Tool to view message traffic using a selected CAN device
and channel. You can also export messages to a log file via this tool.

For more information about this tool, refer to Chapter 3, “Monitoring
CAN Message Traffic”.

6-10

configBusSpeed

Purpose Set bit timing rate of CAN channel

Syntax configBusSpeed(canch, busspeed)
configBusSpeed(canch, busspeed, sjw, tseg1, tseg2,

numberofsamples)

Arguments canch The CAN channel object that you want to set the
bit timing rate for.

busspeed The user-specified bit timing rate for the specified
object.

sjw The synchronization jump width. This value is the
maximum value of time bit adjustments.

tseg1 The length of time at the start of the sample point
within a bit time.

tseg2 The length of time at the end of the sample point
within a bit time.

numberofsamples The specified count of bit samples used.

Description configBusSpeed(canch, busspeed) sets the speed of the CAN channel
in a direct form that uses baseline bit timing calculation factors.

configBusSpeed(canch, busspeed, sjw, tseg1, tseg2,
numberofsamples) sets the speed of the CAN channel canch to
busspeed using the specified bit timing calculation factors to control
the timing in an advanced form.

Remarks Unless you have specific timing requirements for your CAN connection,
use the direct form of configBusSpeed. Also note that you can set the
bus speed only when the CAN channel is offline. The channel must also
have initialization access to the CAN device.

Synchronize all nodes on the network for CAN to work successfully.
However, over time, clocks on different nodes will get out of sync, and
must resynchronize. SJW specifies the maximum width (in time) that

6-11

configBusSpeed

you can add to tseg1 (in a slower transmitter), or subtract from tseg2
(in a faster transmitter) to regain synchronization during the receipt
of a CAN message.

Examples canch = canChannel('Vector','CANCaseXL 1',1)
configBusSpeed(canch,250000)
canch = canChannel('Vector','CANCaseXL 1',1)
configBusSpeed(canch,500000,1,4,3,1)

See Also canChannel

6-12

extractAll

Purpose Select all instances of message from array of messages

Syntax [extracted, remainder] = extractAll(message, messagename)
[extracted, remainder] = extractAll(message, id, extended)

Arguments
message An array of CAN message objects that you specify

to parse and find the specified messages by name
or id.

messagename The name of the message that you specify to
extract.

id The ID of the message that you specify to extract.
extended Indicates whether the message ID is a standard

or extended type. The Boolean value is true if
extended and false if standard.

extracted An array of CAN message objects returned with
all instances of id found in the message.

remainder A CAN message object containing all messages in
the original input message with all instances of
id removed.

Description [extracted, remainder] = extractAll(message, messagename)
parses the given array message, and returns all instances of messages
matching the specified message name.

[extracted, remainder] = extractAll(message, id, extended)
parses the given array message, and returns all instances of messages
matching the specified ID with the specified standard or extended type.

Remarks You can specify id as a cell array of message names or a vector of
identifiers. For example, if you pass id in as [250 5000], [false true],
extractAll returns every instance of both CAN message 250 and
message 500 that it finds in the message array. If any id in the vector

6-13

extractAll

is an extended type, set extended to true and as a vector of the same
length as id.

Examples [msgOut, remainder] =
extractAll(message, 'msg1')

[msgOut, remander] =
extractAll(message, ['msg1' 'msg2' 'msg3'])

[msgOut, remainder] =
extractAll(message, 3000, true)

[msgOut, remainder] =
extractAll(message,[200 5000],[false true])

See Also extractRecent, extractTime

6-14

extractRecent

Purpose Select most recent message from array of messages

Syntax extracted = extractRecent(message)
extracted = extractRecent(message, messagename)
extracted = extractRecent(message, id, extended)

Arguments message An array of CAN message objects that you specify to
parse and find the specified messages by name or id.

messagename The name of the message that you specify to extract.
id The id of the message that you specify to extract.
extended Indicates whether the message ID is a standard

or extended type. The Boolean value is true if
extended and false if standard.

extracted An array of CAN message objects returned with the
most recent instance of id found in the message.

Description extracted = extractRecent(message) parses the given array
message and returns the most recent instance of each unique CAN
message found in the array.

extracted = extractRecent(message, messagename) parses the
specified array of messages and returns the most recent instance
matching the specified message name.

extracted = extractRecent(message, id, extended) parses the
given array message and returns the most recent instance of the
message matching the specified ID with the specified standard or
extended type.

Remarks You can specify id as a vector of identifiers. For example, if you pass
id in as [250 500], extractRecent returns the latest instance of both
CAN message 250 and message 500 if it finds them in the message
array. By default, all identifiers in the vector are standard CAN
message identifiers unless extended is true. If any id in the vector is

6-15

extractRecent

an extended type, then extended is true and is a vector of the same
length as id.

Examples msgOut = extractRecent(message)
msgOut = extractRecent(message, 'msg1')
msgOut = extractRecent(message, ['msg1' 'msg2' msg3'])
msgOut = extractRecent(message, 3000, true)
msgOut = extractRecent(message, [400, 5000], [false true])

See Also extractAll, extractTime

6-16

extractTime

Purpose Select messages occurring within specified time range from array of
messages

Syntax extracted = extractTime(message, starttime, endtime,
msgRange)

Arguments message An array of CAN message objects.
starttime The beginning of the time range in seconds that

you specify. Returns messages with a timestamp
greater than or equal to the specified start time.

endtime The end of the time range in seconds that you
specify. Parses messages with timestamp up to
the specified end time, including the specified end
time.

extracted An array of CAN message objects returned with
all messages that occur within and including
starttime and endtime.

Description extracted = extractTime(message, starttime, endtime,
msgRange) parses the array message and returns all messages with a
timestamp within the specified starttime and endtime, including the
starttime and endtime.

Remarks Specify the time range in increasing order from starttime to endtime.
If you must specify the largest available time, endtime also accepts
Inf as a valid value. The earliest acceptable time you can specify for
starttime is 0.

Examples msgRange = extractTime(message, 5, 10.5)
msgRange = extractTime(message, 0, 60)
msgRange = extractTime(message, 150, Inf)

See Also extractAll, extractRecent

6-17

filterAcceptRange

Purpose Set range of CAN identifiers to pass acceptance filter

Syntax filterAcceptRange(canch, rangestart, rangeend)

Arguments canch The CAN channel that you want to set the filter for.
rangestart The first identifier of the range of message IDs that

the filter accepts.
rangeend The last identifier of the range of message IDs that

the filter accepts.

Description filterAcceptRange(canch, rangestart, rangeend) sets the
acceptance filter for standard identifier CAN messages. It allows
messages within the given range on the CAN channel canch to pass.
rangestart and rangeend establish the beginning and end of the
acceptable range.

Notes

• You can configure message filtering only when the CAN channel is
offline.

• CAN message filters initialize to fully open.

• filterReset makes the acceptance filters fully open.

• filterAcceptRange supports only standard (11-bit) CAN identifiers.

• Set the values from rangestart through rangeend in increasing
order.

• filterAcceptRange and filterBlockRange work together by
allowing and blocking ranges of CAN messages within a single filter.
You can perform both operations multiple times in sequence to
custom configure the filter as desired.

6-18

filterAcceptRange

Remarks When you call filterAcceptRange on an open or reset filter, it
automatically blocks the entire standard CAN identifier range, allowing
only the desired range to pass. Subsequent calls to filterAcceptRange
open additional ranges on the filter without blocking the ranges
previously allowed.

Examples canch = canChannel('Vector','CANCaseXL 1',1)
filterAcceptRange(canch,600,625)
filterAcceptRange(canch,705,710)

See Also filterBlockRange, filterReset, filterSet

6-19

filterBlockRange

Purpose Set range of CAN identifiers to block via acceptance filter

Syntax filterBlockRange(canch, rangestart, rangeend)

Arguments canch The CAN channel that you want to set the filter for.
rangestart The first identifier of the range of message IDs that

the filter starts blocking at.
rangeend The last identifier of the range of message IDs that

the filter stops blocking at.

Description filterBlockRange(canch, rangestart, rangeend) allows you to
block messages within a given range by setting an acceptance filter.

Notes

• You can configure message filtering only when the CAN channel is
offline.

• CAN message filters initialize to fully open.

• Use filterReset to make the acceptance filters fully open.

• filterBlockRange supports only standard (11-bit) CAN identifiers.

• The values from rangestart through rangeendmust be in increasing
order.

• filterBlockRange and filterAcceptRange work together by
blocking and allowing ranges of CAN messages within a single filter.
You can perform both operations multiple times in sequence to
custom configure the filter as desired.

6-20

filterBlockRange

Examples You can set the filter to block or accept messages within a specific range.

canch = canChannel('Vector','CANCaseXL 1',1)
filterBlockRange(canch, 500, 750)
filterAcceptRange(canch,600,625)
filterAcceptRange(canch,705,710)
filterBlockRange(canch,1075,1080)

See Also filterAcceptRange, filterReset, filterSet

6-21

filterReset

Purpose Open CAN message acceptance filters

Syntax filterReset(canch)

Description filterReset(canch) resets the CAN message filters on the CAN
channel canch for both standard and extended CAN identifier types.
Then all messages of all identifier types can pass.

This function does not work if the channel is online. Make sure that the
channel is offline before calling filterReset.

Examples Reset the message filters as shown:

canch = canChannel('Vector','CANCaseXL 1',1)
filterBlockRange(canch, 500, 750)
filterAcceptRange(canch,600,625)
filterAcceptRange(canch,705,710)
filterBlockRange(canch,1075,1080)
filterReset(canch)

See Also filterAcceptRange, filterBlockRange, filterSet

6-22

filterSet

Purpose Set specific CAN message acceptance filter configuration

Syntax filterSet(canch, code, mask, idtype)

Arguments canch The CAN channel that you want to set the filter for.
code The value required for each bit position of the

identifier.
mask The bits in the identifier that are relevant to the filter.
idtype A string specifying either a standard or an extended

CAN message id type.

Description filterSet(canch, code, mask, idtype) sets the CAN message
acceptance filter to the specified code and mask. You also must specify
the CAN identifier type idtype on the CAN channel canch.

Notes

• You can configure message filtering only when the CAN channel is
offline.

• CAN message filters initialize to fully open.

• Use filterReset to make the acceptance filters fully open.

• filterSet supports either standard or extended CAN identifiers.

• To configure filtering for standard CAN identifiers, use either
filterSet or filterAcceptRange/filterBlockRange as both
choices operate on a single filter.

• To configure filtering for extended CAN identifiers, use only
filterSet.

6-23

filterSet

Examples canch = canChannel('Vector','CANCaseXL 1',1)
filterSet(canch,500,750, 'Standard')
filterSet(canch,2500,3000,'Extended')

See Also filterAcceptRange, filterBlockRange, filterReset

6-24

get

Purpose Return property values

Syntax out = get (obj)

Description out = get (obj) returns the structure out, where each field name is
the name of a property of the specified object and each field contains
the value of that property.

Examples Configure a CAN channel:

canch = canChannel('Vector','CANCaseXL 1',1)

Call get on the CAN channel object to obtain the properties of the
configured CAN channel:

get (canch)

Configure a CAN message:

message = canMessage(250, true, 8)

Call get on the message object to obtain the properties of the configured
message:

get (message)

Configure a CAN database:

candb = canDatabase('C:\Database.dbc')

call get on the database to obtain the properties of the configured
database:

get (candb)

6-25

messageInfo

Purpose Information about CAN messages

Syntax msgInfo = messageInfo(candb)
msgInfo = messageInfo(candb, 'msgName')
msgInfo = messageInfo(candb, id, extended)

Arguments candb The database containing the CAN messages that you
want information about.

msgName The name of the message you want information about.
id The numeric identifier of the specified message.
extended Indicates whether the message ID is in standard or

extended type. The Boolean value is true if extended
and false if standard.

Description msgInfo = messageInfo(candb) returns information about CAN
messages in the specified database candb.

msgInfo = messageInfo(candb, 'msgName') returns information
about the specified message 'msgName' in the specified database candb.

msgInfo = messageInfo(candb, id, extended) returns information
about the message with the specified standard or extended ID in the
specified database candb.

Examples candb = canDatabase('c:\Database.dbc')
msgInfo = messageInfo(candb)
msgInfo = messageInfo(candb, 'msgName')
msgInfo = messageInfo(candb, 500, false)

See Also canDatabase, canMessage, signalInfo

6-26

pack

Purpose Pack signal data into CAN message

Syntax pack(message, value, startbit, signalsize, byteorder)

Arguments message The CAN message structure that you specify for the
signal to be packed in.

value The value of the signal you specify to be packed in
the message.

startbit The signal’s starting bit in the data. This is the least
significant bit position in the signal data. Accepted
values for startbit are from 0 through 63.

signalsize The length of the signal in bits. Accepted values for
signalsize are from 1 through 64.

byteorder The signal byte order format. Accepted values are
'LittleEndian' and 'BigEndian'.

Description pack(message, value, startbit, signalsize, byteorder) takes
specified input parameters and packs them into the message.

Examples pack(message, 25, 0, 16, 'LittleEndian')

See Also canMessage, extractAll, extractRecent, extractTime, unpack

6-27

receive

Purpose Receive messages from CAN bus

Syntax message = receive(canch, messagesrequested)

Arguments canch The CAN channel from which to receive the
message.

messagesrequested The maximum count of messages to receive.
The specified value must be a nonzero and
positive, or Inf.

message An array of CAN message objects received
from the channel.

Description message = receive(canch, messagesrequested) returns an array of
CAN message objects received on the CAN channel canch. The number
of messages returned is less than or equal to messagesrequested. If
fewer messages are available than messagesrequested specifies, the
function returns the currently available messages. If no messages are
available, the function returns an empty array. If messagesrequested
is infinite, the function returns all available messages.

To understand the elements of a message, refer to canMessage.

Examples canch = canChannel('Vector','CANCaseXL 1',1)
start(canch)
message = receive(canch,5)

To receive all messages, type:

message = receive(canch,Inf)

See Also canChannel, canMessage, transmit

6-28

receiveRaw

Purpose Receive raw messages from CAN bus

Syntax message = receiveRaw(canch, messagesrequested)

Arguments canch The CAN channel from which to receive the
message.

messagerequested The maximum count of messages to receive.
The specified value must be nonzero and
positive, or Inf.

message An array of message structures received from
the CAN channel.

Description message = receiveRaw(canch, messagesrequested) returns an
array of CAN message structures received on the CAN channel
canch. The number of messages returned is less than or equal
to messagesrequested. If fewer messages are available than
messagesrequested specifies, the function returns the currently
available messages. If no messages are available, the function returns
an empty array. If messagesrequested is infinite, the function returns
all available messages.

To understand the elements of a message, refer to canMessage.

Examples Assuming that you have messages on a channel and an attached
database, you can receive a raw message, convert it to an object and
apply database definitions by typing:

canch = canChannel('Vector','CANCaseXL 1',1)
start(canch)
message = receiveRaw(canch,5)
message = canMessage(msgStructs)
attachDatabase(message, canDatabase('Database.dbc'))

6-29

receiveRaw

Note This example is not an exact workflow.

To receive all messages in the raw structure, type:

message = receiveRaw(canch,Inf)

Note Receive raw messages when you are concerned about
performance issues.

See Also canChannel, canMessage, receive, transmit

6-30

replay

Purpose Retransmit messages from CAN bus

Syntax replay(canch, message)

Arguments canch The CAN channel that you specify to transmit
the messages.

message An array of message objects to replay.

Description replay(canch, message) retransmits the message or messages
message on the channel canch, based on the relative differences of their
timestamps.

To understand the elements of a message, refer to canMessage.

Remarks If you have a loopback connection between two channels, you can:

• Transmit messages 2 seconds apart from one channel.

• Receive them on the other channel.

• Use replay to retransmit the messages with the original delay.

Examples The timestamp differentials between messages in the two receive
arrays are equal.

ch1 = canChannel('Vector', 'CANcaseXL 1', 1)
ch2 = canChannel('Vector', 'CANcaseXL 1', 2)
start(ch1)
start(ch2)
msgTx1 = canMessage(500, false, 8)
msgTx2 = canMessage(750, false, 8)
transmit(ch1, msgTx1)
pause(2)
transmit(ch1, msgTx2)
msgRx1 = receive(ch2, Inf)
replay(canch2, msgRx1)

6-31

replay

pause(2)
msgRx2 = receive(ch1, Inf)

See Also canChannel, canMessage, receive, transmit

6-32

set

Purpose Configure property values

Syntax set (obj, propertyname, propertyvalue)

Description set (obj, propertyname, propertyvalue) configures the specified
property, propertyname, on the object obj, to the value specified in
propertyvalue.

Examples To set a CAN channel property:

canch = canChannel('Vector', 'CANcaseXL 1', 1)
set (canch, 'SilentMode', true)

To set a CAN message property:

message = canMessage(250, 8, true)
set (message, 'Remote', true)

To set a CAN message signal property:

candb = canDatabase('C:\Database.dbc')
message = canMessage(candb, 'Battery_Voltage')
set (message, 'BatVlt', 9.3)

6-33

signalInfo

Purpose Information about signals in CAN message

Syntax SigInfo = signalInfo(candb,'msgName')
SigInfo = signalInfo(candb, id, extended)
SigInfo = signalInfo(candb, id, extended, 'signalName')

Arguments candb The database containing the signals that you want
information about.

msgName The name of the message that contains the signals that
you want information about.

id The numeric identifier of the specified message that
contains the signals you want information about.

extended Indicates whether the message ID is in standard or
extended type. The Boolean value is true if extended
and false if standard.

signalName The name of the specific signal that you want
information about.

sigInfo The signal information object returned from the
function.

Description SigInfo = signalInfo(candb,'msgName') returns information about
the signals in the specified CAN message msgName, in the specified
database candb.

SigInfo = signalInfo(candb, id, extended) returns information
about the signals in the message with the specified standard or
extended ID id, in the specified database candb.

SigInfo = signalInfo(candb, id, extended, 'signalName')
returns information about the specified signal 'signalName' in the
message with the specified standard or extended ID id, in the specified
database candb.

Examples SigInfo = signalInfo(candb, 'Battery_Voltage')
SigInfo = signalInfo(candb, 'Battery_Voltage', 196608, true)

6-34

signalInfo

SigInfo = signalInfo(candb, 'Battery_Voltage', 196608, true, 'BatVl

See Also canDatabase, canMessage, messageInfo

6-35

start

Purpose Set CAN channel online

Syntax start(canch)

Description start(canch) starts the CAN channel canch on the CAN bus to send
and receive messages. The CAN channel remains online unless:

• You call stop on this channel.

• The channel clears from the workspace.

Examples canch = canChannel('Vector','CANCaseXL 1',1)
start(canch)

See Also stop

6-36

stop

Purpose Set CAN channel offline

Syntax stop(canch)

Description stop(canch) stops the CAN channel canch on the CAN bus. The CAN
channel also stops running when you clear canch from the workspace.

Examples canch = canChannel('Vector','CANCaseXL 1',1)
start(canch)
stop(canch)

See Also start

6-37

transmit

Purpose Send CAN messages to CAN bus

Syntax transmit(canch, message)

Arguments canch The CAN channel that you specify to transmit the
message.

message The message or an array of messages that you specify
to transmit via a CAN channel.

Description transmit(canch, message) sends the array of messages onto the bus
via the CAN channel.

To understand the elements of a message, refer to canMessage.

Remarks The Transmit ignores the Timestamp property and theError property.

Examples message = canMessage (250, false, 8)
message.Data = ([45 213 53 1 3 213 123 43])
canch = canChannel('Vector','CANCaseXL 1', 1)
start(canch)
transmit(canch, message)

To transmit an array, construct message1 and message2 as in the
example, and type:

transmit(canch, [message, message1 message2])

To transmit messages on a remote frame, type:

message = canMessage (250, false 8, true)
message.Data = ([45 213 53 1 3 213 123 43])
message.Remote = true
canch = canChannel('Vector','CANCaseXL 1', 1)
start(canch)
transmit(canch, message)

6-38

transmit

See Also canChannel, canMessage, receive

6-39

unpack

Purpose Unpacks signal data from message

Syntax value = unpack(message, startbit, signalsize, byteorder,
datatype)

Arguments message The CAN message structure that you specify for the
signal to be unpacked from.

startbit The signal’s starting bit in the data. This is the
least significant bit position in the signal data.
Accepted values for starbit are from 0 through 63.

signlsize The length of the signal in bits. Accepted values for
signalsize are from 1 through 64.

byteorder The signal binary or binblock format. Accepted
values are LittleEndian and BigEndian.

datatype The data type that you want to get the unpacked
value in.

value The value of the message that you specify to be
unpacked.

Description value = unpack(message, startbit, signalsize, byteorder,
datatype) takes a set of input parameters to unpack the signal value
from the message and returns the value as output.

Examples value = unpack(message, 0, 16, 'LittlegEndian', 'int16')

See Also canMessage, extractAll, extractRecent, extractTime, pack

6-40

7

Property Reference

CAN Channel Base Properties
(p. 7-2)

Apply to CAN channels on all devices

Device-Specific Properties (p. 7-4) Apply to CAN channels on specific
devices

7 Property Reference

CAN Channel Base Properties

Channel Status Properties (p. 7-2) Setting properties that specify
different status of the CAN channel

CAN Message Properties (p. 7-2)
CAN Database Properties (p. 7-3)
Receiving Messages (p. 7-3) Defining actions based on available

messages on a CAN Channel
Error Logging (p. 7-3) Properties for receiving and

transmitting error messages

Channel Status Properties

BusStatus Determine status of CAN bus
Database Store CAN database information
InitializationAccess Determine control of device channel
Running Determine status of CAN channel
SilentMode Specify if channel is active or silent

CAN Message Properties

Data Set CAN message data
Database Store CAN database information
Error CAN message error frame
Extended Identifier type for CAN message
ID Identifier for CAN message
Remote Specify CAN message remote frame
Timestamp Display message received timestamp

7-2

CAN Channel Base Properties

CAN Database Properties

Messages Stores message names from CAN
database

Name (Database) CAN database name
Path Display CAN database directory

path

Receiving Messages

MessageReceivedFcn Specify function to run
MessageReceivedFcnCount Specify number of messages

available before function is triggered
MessagesAvailable Display number of messages

available to be received by CAN
channel

MessagesReceived Display number of messages received
by CAN channel

MessagesTransmitted Display number of messages
transmitted by CAN channel

Error Logging

ReceiveErrorCount Display number of received errors
detected by channel

TransmitErrorCount Display number of transmitted
errors by channel

7-3

7 Property Reference

Device-Specific Properties

Vector Device Settings (p. 7-4) Properties displaying the Vector
device information

Transceiver Settings (p. 7-4) Properties displaying the CAN
channel transceiver information

Bit Timing Settings (p. 7-4) Properties defining the bit timing
and segmentation

Vector Device Settings

Device Display CAN channel device type
DeviceChannelIndex Display CAN device channel index
DeviceSerialNumber Display CAN device serial number
DeviceVendor Display device vendor name

Transceiver Settings

TransceiverName Display name of CAN transceiver
TransceiverState Display state or mode of CAN

transceiver

Bit Timing Settings

BusSpeed Display speed of CAN bus
NumOfSamples Display number of samples available

to channel
SJW Display synchronization jump width

(SJW) of bit time segment

7-4

Device-Specific Properties

TSEG1 Display amount that channel can
lengthen sample time

TSEG2 Display amount that channel can
shorten sample time

7-5

7 Property Reference

7-6

8

Properties — Alphabetical
List

BusSpeed

Purpose Display speed of CAN bus

Description The BusSpeed property determines the bit rate at which messages are
transmitted. You can set BusSpeed to an acceptable bit rate using the
configBusSpeed function.

Characteristics Usage CAN channel
Read only Always
Data type Numerical

Values The default value is assigned by the vendor driver. To change the bus
speed of your channel, use the configBusSpeed function and pass the
channel name and the value as input parameters.

Examples To change the current BusSpeed of the CAN channel object canch to
250000, type:

configBusSpeed(canch, 250000)

See Also Functions

canChannel, configBusSpeed

Properties

NumOfSamples, SJW, TSEG1, TSEG2

8-2

BusStatus

Purpose Determine status of CAN bus

Description The BusStatus property displays information about the state of the
CAN bus.

Characteristics Usage CAN channel
Read only Always
Data type String

Values • N/A

• BusOff

• ErrorOff

• ErrorActive

See Also Functions

canChannel

8-3

Data

Purpose Set CAN message data

Description Use the Data property to define your message data in a CAN message.

Characteristics Usage CAN message
Read only Never
Data type Numeric

Values The data value is a uint8 array, based on the data length you specify
in the message.

Examples To load data into a message, type:

message.Data = [23 43 23 43 54 34 123 1]

If you are using a CAN database for your message definitions, change
values of the specific signals in the message directly.

You can also use the pack function to load data into your message.

See Also Functions

canMessage, pack

8-4

Database

Purpose Store CAN database information

Description The Database property stores information about an attached CAN
database.

Characteristics Usage CAN channel, CAN message
Read only For a CAN message property
Data type String

Values This property displays the database information that your CAN channel
or CAN message is attached to. This property displays an empty
structure, [], if your channel message is not attached to a database.
You can edit the CAN channel property, Database, but cannot edit
the CAN message property.

Examples To see information about the database attached to your CAN message,
type:

message.Database

To set the database information on your CAN channel to
C:\Database.dbc, type:

channel.Database = 'C:\Database.dbc'

See Also Functions

attachDatabase, canChannel, canDatabase, canMessage

8-5

Device

Purpose Display CAN channel device type

Description The Device property displays information about the device type to
which the CAN channel is connected.

Characteristics Usage CAN channel
Read only Always
Data type String

Values Values are automatically defined when you configure the channel with
the canChannel function.

See Also Functions

canChannel, canHWInfo

Properties

DeviceChannelIndex, DeviceVendor

8-6

DeviceChannelIndex

Purpose Display CAN device channel index

Description The DeviceChannelIndex property displays the channel index on which
the selected CAN channel is configured.

Characteristics Usage CAN channel
Read only Always
Data type Numeric

Values Values are automatically defined when you configure the channel with
the canChannel function.

See Also Functions

canChannel, canHWInfo

Properties

Device, DeviceVendor

8-7

DeviceSerialNumber

Purpose Display CAN device serial number

Description The DeviceSerialNumber property displays the serial number of the
CAN device.

Characteristics Usage CAN channel
Read only Always
Data type Numeric

Values Values are automatically defined when you configure the channel with
the canChannel function.

See Also Functions

canChannel, canHWInfo

Properties

Device, DeviceVendor

8-8

DeviceVendor

Purpose Display device vendor name

Description The DeviceVendor property displays the name of the device vendor.

Characteristics Usage CAN channel
Read only Always
Data type String

Values Values are automatically defined when you configure the channel with
the canChannel function.

See Also Functions

canChannel, canHWInfo

Properties

Device, DeviceChannelIndex, DeviceSerialNumber

8-9

Error

Purpose CAN message error frame

Description The Error property is a read-only value that identifies the specified
CAN message as an error frame. The channel sets this property to true
when it receives a CAN message as an error frame.

Characteristics Usage CAN message
Read only Always
Data type Boolean

Values • false — The message is not an error frame.

• true — The message is an error frame.

The Error property displays false, unless the message is an error
frame.

See Also Functions

canMessage

8-10

Extended

Purpose Identifier type for CAN message

Description The Extended property is the identifier type for a CAN message. It can
either be a standard identifier or an extended identifier.

Characteristics Usage CAN message
Read only Always
Data type Boolean

Values • false— The identifier type is standard (11 bits).

• true — The identifier type is extended (29 bits).

Examples To set the message identifier type to extended with the ID set to 2350
and the data length to 8 bytes, type:

message = canMessage(2350, true, 8)

You cannot edit this property after the initial configuration.

See Also Functions

canMessage

Properties

ID

8-11

ID

Purpose Identifier for CAN message

Description The ID property represents a numeric identifier for a CAN message.

Characteristics Usage CAN message
Read only Always
Data type Numeric

Values The ID value must be a positive integer from:

• 0 through 2047 for a standard identifier

• 0 through 536,870,911 for an extended identifier

You can also specify a hexadecimal value using the hex2dec function.

Examples To configure a message ID to a standard identifier of value 300 and a
data length of 8 bytes type:

message = canMessage(300, false, 8)

See Also Functions

canMessage

Properties

Extended

8-12

InitializationAccess

Purpose Determine control of device channel

Description The InitializationAccess property determines if the configured CAN
channel object has full control of the device channel. You can change
some property values of the hardware channel only if the object has full
control over the hardware channel.

Note Only the first channel created on a device is granted initialization
access.

Characteristics Usage CAN channel
Read only Always
Data type Boolean

Values • Yes— Has full control of the hardware channel and can change the
property values.

• No— Does not have full control and cannot change property values.

See Also Functions

canChannel

8-13

MessageReceivedFcn

Purpose Specify function to run

Description Configure MessageReceivedFcn as a callback function to run a string
expression, a function handle, or a cell array when a specified number
of messages are available.

The MessageReceivedFcnCount property defines the number of
messages available before the configured MessageReceivedFcn runs.

Characteristics Usage CAN channel
Read only Never
Data type Callback function

Values The default value is an empty string. You can specify the name of a
callback function that you want to run when the specified number of
messages are available.

Examples canch.MessageReceivedFcn = @Myfunction

You can also use the set function to set the values of this property.

See Also Functions

canChannel, set

Properties

MessageReceivedFcnCount, MessagesAvailable

8-14

MessageReceivedFcnCount

Purpose Specify number of messages available before function is triggered

Description You configure MessageReceivedFcnCount to the number of messages
that must be available before a MessageReceivedFcn is triggered.

Characteristics Usage CAN channel
Read only While channel is online
Data type Double

Values The default value is 1. You can specify a positive integer for your
MessageReceivedFcnCount.

Examples canch.MessageReceivedFcnCount = 55

You can also use the set function to set the values of this property.

See Also Functions

canChannel, set

Properties

MessageReceivedFcn, MessagesAvailable

8-15

Messages

Purpose Stores message names from CAN database

Description This property stores the names of all the messages defined in the
selected CAN database.

Characteristics Usage CAN database
Read only Always
Data type String

Values The Messages property displays a cell array of strings. You cannot
edit this property.

See Also canDatabase, messageInfo

8-16

MessagesAvailable

Purpose Display number of messages available to be received by CAN channel

Description The MessagesAvailable property displays the total number of
messages available to be received by a CAN channel.

Characteristics Usage CAN channel
Read only Always
Data type Double

Values The value is 0 when no messages are available.

See Also Functions

canChannel

Properties

MessagesReceived, MessagesTransmitted

8-17

MessagesReceived

Purpose Display number of messages received by CAN channel

Description The MessagesReceived property displays the total number of messages
received since the channel was last started.

Characteristics Usage CAN channel
Read only Always
Data type Double

Values The value is 0 when no messages have been received. This number
increments based on the number of messages the channel receives.

See Also Functions

canChannel, canHWInfo

Properties

MessagesAvailable, MessagesTransmitted

8-18

MessagesTransmitted

Purpose Display number of messages transmitted by CAN channel

Description The MessagesTransmitted property displays the total number of
messages transmitted since the channel was last started.

Characteristics Usage CAN channel
Read only Always
Data type Double

Values The default is 0 when no messages have been sent. This number
increments based on the number of messages the channel transmits.

See Also Functions

canChannel

Properties

MessagesAvailable, MessagesReceived

8-19

Name (Database)

Purpose CAN database name

Description The Name (Database) property displays the name of the database.

Characteristics Usage CAN database
Read only Always
Data type String

Values Name is a string value. This value is acquired from the name of the
database file. You cannot edit this property.

See Also Functions

canDatabase

Properties

Extended, ID

8-20

Name (Message)

Purpose CAN message name

Description The Name (Message) property displays the name of the message.

Characteristics Usage CAN message
Read only Always
Data type String

Values Name is a string value. This value is acquired from the name of the
message you defined in the database. You cannot edit this property
if you are defining raw messages.

See Also Functions

canMessage

Properties

Extended, ID

8-21

NumOfSamples

Purpose Display number of samples available to channel

Description The NumOfSamples property displays the total number of samples
available to this channel. If you do not specify a value, the BusSpeed
property determines the default value.

Characteristics Usage CAN channel
Read only Always
Data type Double

Values The value is a positive integer based on the driver settings for the
channel.

See Also Functions

canChannel, configBusSpeed

Properties

BusSpeed, SJW, TSEG1, TSEG2

8-22

Path

Purpose Display CAN database directory path

Description The Path property displays the path to the CAN database.

Characteristics Usage CAN database
Read only Always
Data type String

Values The path name is a string value, pointing to the CAN database in your
directory structure.

See Also Functions

canDatabase

8-23

ReceiveErrorCount

Purpose Display number of received errors detected by channel

Description The ReceiveErrorCount property displays the total number of errors
detected by this channel during receive operations.

Characteristics Usage CAN channel
Read only Always
Data type Double

Values The value is 0 when no error messages have been received.

See Also Functions

canChannel, receive

Properties

TransmitErrorCount

8-24

Remote

Purpose Specify CAN message remote frame

Description Use the Remote property to specify the CAN message as a remote frame.

Characteristics Usage CAN message
Read only Never
Data type Boolean

Values • {false} — The message is not a remote frame.

• true — The message is a remote frame.

Examples To change the default value of Remote and make the message a remote
frame, type:

message.Remote = true

See Also Functions

canMessage

8-25

Running

Purpose Determine status of CAN channel

Description The Running property displays information about the state of the CAN
channel.

Characteristics Usage CAN channel
Read only Always
Data type Boolean

Values • {false} — The channel is offline.

• true — The channel is online.

Use the start function to set your channel online.

See Also Functions

canChannel, start

8-26

SilentMode

Purpose Specify if channel is active or silent

Description Specify whether the channel operates silently. By default SilentMode
is false. In this mode, the channel both transmits and receives
messages normally and performs other tasks on the network such as
acknowledging messages and creating error frames.

To observe all message activity on the network and perform analysis
without affecting the network state or behavior, change SilentMode to
true. In this mode, you can only receive messages and not transmit any.

Characteristics Usage CAN channel
Read only Never
Data type Boolean

Values • {false}— The channel is in normal or active mode.

• true — The channel is in silent mode.

Examples To configure the channel to silent mode, type:

canch.SilentMode = true

To configure the channel to normal mode, type:

canch.SilentMode = false

You can also use the set function to set the values of this property.

See Also Functions

canChannel, set

8-27

SJW

Purpose Display synchronization jump width (SJW) of bit time segment

Description In order to adjust the on-chip bus clock, the CAN controller may shorten
or prolong the length of a bit by an integral number of time segments.
The maximum value of these bit time adjustments are termed the
Synchronization Jump Width or SJW.

Characteristics Usage CAN channel
Read only Always
Data type Numeric

Values The value of the SJW is determined by the specified bus speed.

See Also Functions

canChannel, configBusSpeed

Properties

BusSpeed, NumOfSamples, TSEG1, TSEG2

8-28

Timestamp

Purpose Display message received timestamp

Description The Timestamp property displays the time at which the message
was received on a CAN channel. This time is based on the receiving
channel’s start time.

Characteristics Usage CAN message
Read only Never
Data type Double

Values Timestamp displays a numeric value indicating the time the message
was received, based on the start time of the CAN channel

Examples To set the time stamp of a message to 12, type:

message.Timestamp = 12

See Also Functions

canChannel, canMessage, receive, replay

8-29

TransceiverName

Purpose Display name of CAN transceiver

Description The CAN transceiver translates the digital bit stream going to and
coming from the CAN bus into the real electrical signals present on
the bus.

Characteristics Usage CAN channel
Read only Always
Data type String

Values Values are automatically defined when you configure the channel with
the canChannel function.

See Also Functions

canChannel

Properties

TransceiverState

8-30

TransceiverState

Purpose Display state or mode of CAN transceiver

Description If your CAN transceiver allows you to control its mode, you can use the
TransceiverState property to set the mode.

Characteristics Usage CAN channel
Read only Never
Data type Numeric

Values The values are defined by the transceiver manufacturer. Refer to your
CAN transceiver documentation for the appropriate transceiver modes.
Possible modes representing the numeric value specified can be:

• high speed

• high voltage

• sleep

• wake up

See Also Functions

canChannel

Properties

TransceiverName

8-31

TransmitErrorCount

Purpose Display number of transmitted errors by channel

Description The TransmitErrorCount property displays the total number of errors
detected by this channel during transmit operations.

Characteristics Usage CAN channel
Read only Always
Data type Double

Values The value is 0 when no error messages have been transmitted.

See Also Functions

canChannel, transmit

Properties

ReceiveErrorCount

8-32

TSEG1

Purpose Display amount that channel can lengthen sample time

Description The TSEG1 property displays the amount in bit time segments that the
channel can lengthen the sample time to compensate for delay times
in the network.

Characteristics Usage CAN channel
Read only Always
Data type Double

Values The value is inherited when you configure the bus speed of your CAN
channel.

See Also Functions

canChannel, configBusSpeed

Properties

BusSpeed, NumberOfSamples, SJW, TSEG2

8-33

TSEG2

Purpose Display amount that channel can shorten sample time

Description The TSEG2 property displays the amount of bit time segments the
channel can shorten the sample to resynchronize.

Characteristics Usage CAN channel
Read only Always
Data type Double

Values The value is inherited when you configure the bus speed of your CAN
channel.

See Also Functions

canChannel, configBusSpeed

Properties

BusSpeed, NumberOfSamples, SJW, TSEG1

8-34

Index

IndexA
attachDatabase function 6-2

B
base properties

list for can channel 7-2
bit timing settings

device-specific properties 7-4
Block Library 4-3
blocks

using the Vehicle Network Toolbox block
library 4-1

building
CAN messages 1-15

BusSpeed property 8-2
BusStatus property 8-3

C
CAN

transmit message 1-17
workflow 1-8

can channel
base properties 7-2

CAN Channel
interface-specific properties 7-4

CAN channels
configuring properties 1-13
disconnecting 1-19
SilentMode 1-25
starting 1-14

CAN communication
session 1-8

CAN communications
configuring 1-10

CAN devices
connecting 1-11

CAN messages
building 1-15

filtering 1-21
packing 1-16
receiving 1-18
unpacking 1-19

can.vector.channel, configBusSpeed
function 6-11

can.vector.channel, fileterBlockRange
function 6-20

can.vector.channel, filterAccceptRange
function 6-18

can.vector.channel, filterReset
function 6-22

can.vector.channel, filterSet function 6-23
canChannel function 6-3
canChannel, get function 6-25
canChannel, receive function 6-28
canChannel, receive raw function 6-29
canChannel, replay function 6-31
canChannel, set function 6-33
canChannel, start function 6-36
canChannel, stop function 6-37
canChannel, transmit function 6-38
canDatabase function 6-5
canHWInfo function 6-6
canMessage function 6-7
canSupport function 6-9
canTool function 6-10
cleaning

MATLAB workspace 1-20
configuring

CAN channel properties 1-13 1-25
CAN communications 1-10
message filtering 1-21

connecting
CAN devices 1-11

D
Data property 8-4
Database property 8-5

Index-1

Index

Device property 8-6
device-specific properties

list by object type 7-4
DeviceChannelIndex property 8-7
DeviceSerialNumber property 8-8
DeviceVendor property 8-9
disconnecting

CAN channels 1-19

E
Error property 8-10
Extended property 8-11
extractAll function 6-13
extractRecent function 6-15
extractTime function 6-17

F
filtering

CAN messages 1-21
functions

attachDatabase 6-2
canChannel 6-3
canChannel, transmit 6-38
canChannelset 6-33
canChannelstart 6-36
canDatabase 6-5
canHWInfo 6-6
canMessage 6-7
canSupport 6-9
canTool 6-10
configBusSpeed, can.vector.channel 6-11
extractAll 6-13
extractRecent 6-15
extractTime 6-17
filterAcceptRange,

can.vector.channel 6-18
filterBlockRange,

can.vector.channel 6-20

filterReset, can.vector.channel 6-22
filterSet, can.vector.channel 6-23
get, canChannel 6-25
messageInfo, canChannel 6-26
pack 6-27
receive raw, canChannel 6-29
receive, canChannel 6-28
replay, canChannel 6-31
signalInfo, canDatabase 6-34
stop, canChannel 6-37
unpack 6-40

I
ID property 8-12
InitializationAccess property 8-13

M
MATLAB workspace

cleaning 1-20
message

transmit 1-17
message filtering

configuring 1-21
messageInfo function 6-26
MessageReceivedFcn property 8-14
MessageReceivedFcnCount property 8-15
messages

packing 1-16
receiving 1-18
unpacking 1-19

Messages property 8-16
MessagesAvailable property 8-17
MessagesReceived property 8-18
MessagesTransmitted property 8-19

N
Name (Database) property 8-20
Name (Message) property 8-21

Index-2

Index

NumOfSamples property 8-22

P
pack function 6-27
packing

CAN messages 1-16
properties

BusSpeed 8-2
BusStatus 8-3
Data 8-4
Database 8-5
Device 8-6
DeviceChannelIndex 8-7
DeviceSerialNumber 8-8
DeviceVendor 8-9
Error 8-10
Extended 8-11
ID 8-12
InitializationAccess 8-13
MessageReceivedFcn 8-14
MessageReceivedFcnCount 8-15
Messages 8-16
MessagesAvailable 8-17
MessagesReceived 8-18
MessagesTransmitted 8-19
Name (Database) 8-20
Name (Message) 8-21
NumOfSamples 8-22
ReceiveErrorCount 8-23 to 8-24
Remote 8-25
Running 8-26
SilentMode 8-27
SJW 8-28
synchronization jump width 8-28
Timestamp 8-29
TransceiverName 8-30
TransceiverState 8-31
TransmitErrorCount 8-32
TSEG1 8-33

TSEG2 8-34
property values

base
for can channel 7-2

device-specific 7-4

R
ReceiveErrorCount property 8-23 to 8-24
receiving

CAN messages 1-18
Remote property 8-25
Running property 8-26

S
signalInfo, signalInfo function 6-34
SilentMode property 8-27
Simulink Library Browser 4-4
SJW property 8-28
starting

CAN channels 1-14
synchronization jump width

properties 8-28

T
Timestamp

properties 8-29
transceiver settings

device-specific properties 7-4
TransceiverName

properties 8-30
TransceiverState

properties 8-31
transmit

CAN message 1-17
TransmitErrorCount

properties 8-32
TSEG1

properties 8-33

Index-3

Index

TSEG2
properties 8-34

U
unpack function 6-40
unpacking

CAN messages 1-19

V
Vector CAN device

device-specific properties 7-4
Vehicle Network Toolbox block library

using 4-1
Vehicle Network Toolbox Block Library

opening 4-3

Index-4

	toc
	Getting Started
	Product Overview
	Getting to Know the Vehicle Network Toolbox
	Main Features
	CAN Connectivity
	Vector Device and Driver Support
	Vehicle Network Toolbox Functions
	Simulink Library Support
	CAN Tool Interface

	Interaction Between the Toolbox and Its Components
	Expected Background
	Related Products
	Installation Requirements
	Installing Components
	Installing Hardware Devices and Drivers
	Installing the XL Driver Library
	Installing the Toolbox

	Supported Hardware

	CAN Communication Session
	Workflow Overview
	Typical CAN Workflow

	Configuring CAN Communications
	Prerequisites
	Checking for the Installed CAN Hardware
	Creating a CAN Channel Object
	Configuring Properties
	Starting the Configured Channel
	Creating a Message Object
	Packing a Message
	Transmitting a Message
	Receiving a Message
	Unpacking a Message

	Disconnecting Channels and Cleaning Up
	Disconnecting the Configured Channel
	Cleaning Up the MATLAB Workspace

	Performing Advanced Configurations
	Configuring Message Filtering
	Configuring Multiplexing
	Configuring Silent Mode

	Accessing the Toolbox
	Exploring the Toolbox
	Getting Help
	Viewing Examples

	Using a CAN Database
	Vector CANdb Support
	Loading and Creating Messages Using the .dbc File
	Loading the CAN Database
	Creating a CAN Message
	Adding a Database to a CAN Channel

	Other Uses of the CAN Database
	Viewing Messages Information in the CAN Database
	Viewing Signal Information in a CAN Message
	Attaching a CAN Database to Existing Messages

	Monitoring CAN Message Traffic
	The CAN Tool
	Opening the CAN Tool
	Parts of the CAN Tool
	Configuration
	Messages
	Messages Table

	Using the CAN Tool
	Viewing Messages on a Channel
	Configuring the Channel Bus Speed
	Saving the Message Log File
	Viewing Unique Messages

	Using the Vehicle Network Toolbox Block Library
	Introducing the Vehicle Network Toolbox Block Library
	Opening the Vehicle Network Toolbox Block Library
	Using the canlib Command from the MATLAB Command Window
	Using the Simulink Library Browser

	Building Simulink Models to Transmit and Receive Messages
	Build a Message Transmit Model
	Step 1: Open the Block Library
	Step 2: Create a New Model
	Step 3: Drag the Vehicle Network Toolbox Blocks into the Model
	Step 4: Drag Other Blocks to Complete the Model
	Step 5: Connect the Blocks
	Step 6: Specify the Block Parameter Values

	Build a Message Receive Model
	Step 7: Drag the Vehicle Network Toolbox Blocks into the Model
	Step 8: Drag Other Blocks to Complete the Model
	Step 9: Connect the Blocks
	Step 10: Specify the Block Parameter Values

	Save and Run The Model
	Step 11: Save the Model
	Step 12: Run the Simulation
	Step 13: View the Results

	Function Reference
	CAN Channel Construction
	CAN Channel Configuration
	CAN Channel Execution
	CAN Channel Status
	CAN Database
	CAN Message Handling
	Information and Help
	Graphical Tools
	Vector Informatik

	Functions — Alphabetical List
	Property Reference
	CAN Channel Base Properties
	Channel Status Properties
	CAN Message Properties
	CAN Database Properties
	Receiving Messages
	Error Logging

	Device-Specific Properties
	Vector Device Settings
	Transceiver Settings
	Bit Timing Settings

	Properties — Alphabetical List
	Index

